A DEVELOPMENT OF THE INTEGRATED NATURE OF SCIENCE CURRICULUM TO ENHANCE STUDENT UNDERSTANDING OF THE NATURE OF SCIENCE AND DECISION MAKING ON SCIENCE-BASED DILEMMAS

Presented in Partial Fulfillment of the Requirements for the

Doctor of Education Degree in Science Education

at Srinakharinwirot University

May 2011

A DEVELOPMENT OF THE INTEGRATED NATURE OF SCIENCE CURRICULUM TO ENHANCE STUDENT UNDERSTANDING OF THE NATURE OF SCIENCE AND DECISION MAKING ON SCIENCE-BASED DILEMMAS

Presented in Partial Fulfillment of the Requirements for the

Doctor of Education Degree in Science Education

at Srinakharinwirot University

May 2011

Copyright 2011 by Srinakharinwirot University

A DEVELOPMENT OF THE INTEGRATED NATURE OF SCIENCE CURRICULUM TO ENHANCE STUDENT UNDERSTANDING OF THE NATURE OF SCIENCE AND DECISION MAKING ON SCIENCE-BASED DILEMMAS

Presented in Partial Fulfillment of the Requirements for the

Doctor of Education Degree in Science Education

at Srinakharinwirot University

May 2011

Parinda Limpanont. (2011). A Development of the Integrated Nature of Science Curriculum to Enhance Student Understanding of the Nature of Science and Decision Making on Science-Based Dilemmas. Dissertation, Ed.D. (Science Education). Bangkok: Graduate School. Srinakharinwirot University. Advisor Committee:

Assoc. Prof. Dr. Sunee Haemaprasith, Assoc. Prof Dr. Parin Chaivisuthangkura, Asst. Prof. Dr. Alisara Chuchat.

The purpose of this study was to develop and explore the effects of the curriculum that was developed in terms of students' understanding of the tentative nature of science, their decision making on science-based dilemmas, and their achievement of genetics understanding.

This curriculum aimed to integrate genetics course content with concepts of the tentative nature of science (TNOS), consisting of three dimensions: 1) the epistemology of science, 2) individual scientist, and 3) sociocultural context. The approaches planned for instruction were a historical-based approach and an explicit-reflective approach. Curriculum content consisted of five integrated units: 1) Mendel and the origin of genetics, 2) The rediscovery of Mendel, 3) Chromosomes: the evidence of genes, 4) DNA: the key to solving genetic problems, and 5) Genetics, lives, and environment. The draft curriculum and instructional materials were evaluated by an expert panel. The IOC results from the evaluation of the draft curriculum by experts were between 0.6-1.0. The curriculum and instructional plans were piloted in a class of 20 students and necessary revisions were made according to expert feedback.

During the phase of curriculum implementation, the pretest-posttest control-group quasi experimental design was used for data collection. Participants were students in two classrooms of grade 9 students in a lower secondary school in Bangkok, Thailand. One classroom consisted of 51 participating students who were taught using the integrated nature of science curriculum, while the other classroom consisted of 45 students who were taught following the conventional school curriculum. Data from both groups regarding students' understanding of TNOS and decision making on science-based dilemmas were

collected and compared. In the case of students in the class using the integrated nature of science curriculum, open-ended questionnaires and follow up interview protocols were used to detect any discrepancies between their written, questionnaire responses and their oral responses during the interviews. The analysis of these two variables was carried out using two different methods. The first was quantitative analysis, which was done by scoring students' responses to examine the levels of their knowledge and then reporting these scores and the percentage of students at each level. The second was qualitative analysis, which analyzed content and generated categories and themes for describing students' views of TNOS and their decision making characteristics on science-based dilemmas. Data on students' achievement in genetics understanding was collected from students in both classrooms by using multiple-choice tests and analyzed by using ANCOVA statistics to compare achievement scores of students who learned via the integrated nature of science curriculum and those who learned under the conventional school curriculum.

The results indicated that students who learned in the integrated nature of science curriculum increased levels of understanding of TNOS in all aspects, namely, the tentativeness of scientific knowledge, the process of science, subjectivity in scientific conclusions, the role of scientists' opinions and imagination in science, and the relationship between science and society. However, it was also found that even though students improved their understanding of the process of science, many of them did not evidence their understanding of observation and interpretation as the fundamental process of science. In addition, students improved their levels of decision making on science-based dilemmas by taking into account information related to TNOS aspects. The information students took into account was mostly related to epistemology of science, followed by individual scientists, while small numbers of students indicated their concern about the "sociocultural context" dimension of the TNOS framework. Finally, the mean achievement scores on genetics understanding for students in the class that learned in the integrated nature of science curriculum was higher than for students in the class that learned under the conventional school curriculum (at the 0.01 level).

การพัฒนาหลักสูตรบูรณาการธรรมชาติของวิทยาศาสตร์ เพื่อส่งเสริมความเข้าใจในธรรมชาติของวิทยาศาสตร์ และการตัดสินใจในประเด็นปัญหาเกี่ยวกับวิทยาศาสตร์

เสนอต่อบัณฑิตวิทยาลัย มหาวิทยาลัยศรีนครินทรวิโรฒ เพื่อเป็นส่วนหนึ่งของการศึกษา ตามหลักสูตรปริญญาดุษฎีบัณฑิต สาขาวิชาวิทยาศาสตรศึกษา พฤษภาคม 2554 ปริณดา ลิมปานนท์ (2554). การพัฒนาหลักสูตรบูรณาการธรรมชาติของวิทยาศาสตร์เพื่อส่งเสริม ความเข้าใจในธรรมชาติของวิทยาศาสตร์และการตัดสินใจในประเด็นปัญหาเกี่ยวกับ วิทยาศาสตร์. ปริญญานิพนธ์ กศ.ด. (วิทยาศาสตรศึกษา), กรุงเทพฯ: บัณฑิตวิทยาลัย มหาวิทยาลัยศรีนครินทรวิโรฒ. คณะกรรมการควบคุม: รองศาสตราจารย์ ดร.สุนีย์ เหมะประสิทธิ์, รองศาสตราจารย์ ดร. ปรินทร์ ชัยวิสุทธางกูร, ผู้ช่วยศาสตราจารย์ ดร. อลิศรา ชูชาติ.

การวิจัยนี้มีจุดมุ่งหมายเพื่อพัฒนาหลักสูตรบูรณาการธรรมชาติของวิทยาศาสตร์และ ศึกษาผลของหลักสูตรต่อการเรียนรู้ของนักเรียนสามด้านคือ ความเข้าใจในธรรมชาติที่เปลี่ยนแปลง ได้ของวิทยาศาสตร์ การตัดสินใจในประเด็นปัญหาเกี่ยวกับวิทยาศาสตร์ และผลสัมฤทธิ์ทางการ เรียนพันธุศาสตร์

หลักสูตรนี้เป็นการบูรณาการระหว่างเนื้อหาสาระพันธุศาสตร์กับความคิดรวบยอดเรื่อง ธรรมชาติของวิทยาศาสตร์ที่เปลี่ยนแปลงได้ซึ่งประกอบด้วยมิติปัจจัยที่เกี่ยวข้องสามมิติได้แก่ ญาณ วิทยาทางวิทยาศาสตร์ บริบททางสังคมและวัฒนธรรม และพื้นฐานส่วนบุคคลของนักวิทยาศาสตร์ กระบวนการจัดการเรียนรู้ที่ใช้ประกอบหลักสูตรคือกระบวนการสอนด้วยประวัติศาสตร์ และ กระบวนการสอนแบบชัดเจนร่วมกับการสะท้อนความคิด หลักสูตรประกอบด้วยหน่วยการเรียนรู้ บูรณาการ 5 หน่วยคือ เมนเดลกับตันกำเนิดวิชาพันธุศาสตร์ เมื่อข้อความรู้ของเมนเดลถูกค้นพบ โครโมโซมหลักฐานสนับสนุนความคิดเรื่องยืน การค้นพบดีเอ็นเอสู่กุญแจไขปริศนาพันธุศาสตร์ และ พันธุศาสตร์กับชีวิตและสิ่งแวดล้อม ร่างหลักสูตรและเอกสารสำหรับใช้ในการจัดการเรียนรู้ได้รับการ ประเมินโดยผู้เชี่ยวชาญ โดยผลการประเมินมีค่า IOC ระหว่าง 0.6-1.0 โดยมีการนำหลักสูตรบูรณาการธรรมชาติของวิทยาศาสตร์และแผนการจัดการเรียนรู้ศึกษานำร่องกับนักเรียนจำนวน 20 คน และนำผลมาปรับปรุงหลักสูตรและแผนการจัดการเรียนรู้ก่อนนำไปใช้

การเก็บรวบรวมข้อมูลระหว่างการน้ำหลักสูตรไปใช้ ใช้รูปแบบการวิจัยแบบกึ่งทดลองที่มี การทดสอบก่อนและหลังเรียนโดยมีกลุ่มควบคุม ตัวอย่างวิจัยคือนักเรียนจำนวน 2 ห้องเรียน ใน ระดับชั้นมัธยมศึกษาปีที่ 3 ของโรงเรียนในกรุงเทพมหานคร โดยนักเรียน 1 ห้องที่มีจำนวนนักเรียน 51 คน ทดลองเรียนโดยใช้หลักสูตรบูรณาการธรรมชาติของวิทยาศาสตร์ และนักเรียนอีก 1 ห้องเรียนที่มีจำนวนนักเรียน 45 คนเรียนด้วยหลักสูตรปกติของโรงเรียน การเก็บรวบรวมข้อมูล เกี่ยวกับความเข้าใจในธรรมชาติของวิทยาศาสตร์ที่เปลี่ยนแปลงได้ และการตัดสินใจในประเด็น ปัญหาเกี่ยวกับวิทยาศาสตร์ของนักเรียนดำเนินการเก็บรวบรวมเฉพาะนักเรียนในห้องเรียนที่เรียน ด้วยหลักสูตรที่สร้างขึ้นและเปรียบเทียบข้อมูลระหว่างก่อนและหลังเรียน โดยใช้แบบสอบถาม ปลายเปิดและการสัมภาษณ์ภายหลังการสอบถาม จากนั้นนำข้อมูลมาวิเคราะห์ในสองลักษณะ คือ การวิเคราะห์เชิงปริมาณโดยการให้คะแนนและประเมินระดับความเข้าใจในธรรมชาติของ วิทยาศาสตร์ที่เปลี่ยนแปลงได้และระดับความสามารถในการตัดสินใจของนักเรียน และรายงาน จำนวนร้อยละของนักเรียนที่มีระดับความเข้าใจในธรรมชาติของวิทยาศาสตร์ที่เปลี่ยนแปลงได้และ

ความสามารถในการตัดสินใจแต่ละระดับ การวิเคราะห์อีกลักษณะหนึ่งเป็นการวิเคราะห์ข้อมูลเชิง คุณภาพโดยการวิเคราะห์เนื้อหาของคำตอบนักเรียน และนำข้อมูลมาจัดกลุ่มเพื่ออธิบายทรรศนะที่ นักเรียนมีต่อธรรมชาติของวิทยาศาสตร์ที่เปลี่ยนแปลงได้ และประเภทของข้อมูลที่มีผลต่อการ ตัดสินใจในประเด็นปัญหาเกี่ยวกับวิทยาศาสตร์ ส่วนตัวแปรในด้านความเข้าใจในเนื้อหาสาระพันธุศาสตร์ของนักเรียนเก็บรวบรวมโดยข้อสอบแบบเลือกตอบ และเปรียบเทียบคะแนนความเข้าใจใน เนื้อหาสาระพันธุศาสตร์ของนักเรียนระหว่างกลุ่มที่เรียนด้วยหลักสูตรที่สร้างขึ้นกับหลักสูตรปกติของโรงเรียน โดยใช้สถิติ ANCOVA

ผลการวิจัยพบว่า หลังจากเรียนด้วยหลักสูตรที่สร้างขึ้น นักเรียนมีระดับความเข้าใจใน ธรรมชาติที่เปลี่ยนแปลงได้ของวิทยาศาสตร์เพิ่มขึ้นในทุกประเด็นที่ศึกษาซึ่งได้แก่ ลักษณะที่ เปลี่ยนแปลงได้ของความรู้ทางวิทยาศาสตร์ กระบวนการทางวิทยาศาสตร์ ความเป็นอัตนัยของ ข้อสรุปทางวิทยาศาสตร์ บทบาทของความคิดเห็นส่วนตัวและจินตนาการของนักวิทยาศาสตร์ และ ความสัมพันธ์ระหว่างวิทยาศาสตร์และสังคม อย่างไรก็ตามมีการพบว่า แม้ว่านักเรียนจะมี พัฒนาการด้านความเข้าใจในกระบวนการทางวิทยาศาสตร์ แต่นักเรียนจำนวนมากไม่ได้สะท้อน ความเข้าใจเกี่ยวกับการสังเกตและการตีความหมายซึ่งเป็นพื้นฐานสำคัญในการสืบเสาะหาความรู้ ทางวิทยาศาสตร์ นอกจากนี้พบว่า นักเรียนมีระดับความสามารถในการตัดสินใจเกี่ยวกับประเด็น ปัญหาที่เกี่ยวข้องกับวิทยาศาสตร์มากขึ้น โดยมีการคำนึงถึงข้อมูลที่เกี่ยวข้องกับธรรมชาติที่ เปลี่ยนแปลงได้ของวิทยาศาสตร์มากขึ้น ทั้งนี้ข้อมูลนักเรียนที่คำนึงถึงเมื่อตัดสินใจมีความเกี่ยวข้อง กับมิติด้านญาณวิทยาทางวิทยาศาสตร์มากที่สุด รองลงมาคือลักษณะส่วนบุคคลของ นักวิทยาศาสตร์ อย่างไรก็ตามมีนักเรียนคำนึงถึงข้อมูลเกี่ยวกับมิติด้านบริบททางสังคมและ วัฒนธรรมเพียงเล็กน้อย ผลการวิจัยยังพบว่า นักเรียนกลุ่มที่เรียนด้วยหลักสูตรที่สร้างขึ้นมีความ เข้าใจในเนื้อหาสาระพันธุศาสตร์มากกว่านักเรียนกลุ่มที่เรียนด้วยหลักสูตรปกติของโรงเรียนอย่างมี นัยสำคัญทางสถิติที่ระดับ 0.01

ACKNOWLEDGEMENTS

I am would like to humbly express my extreme gratitude to HRH Princess Maha Chakri Sirindhorn for the endowment she granted me to attend specific assigned courses as a visiting scholar for one year at the University of Minnesota. Without her genuine kindness, I would never have had the opportunity to further my studies in the philosophy and history of science, and this research would never have happened. I am also most grateful to the former president of Srinakharinwirot University, Dr. Khunying Sumontha Promboon for her valuable contribution to the royal patronage scheme.

This research would not have been possible without the kind support and guidance from my advisor, Dr. Sunee Hemaprasit and my co-advisors, Dr. Parin Chaivisuthangkura and Dr. Alisara Chuchat. I am also extremely grateful to Dr. Fred Finley, my advisor at the University of Minnesota, who has given me continuous and generous support, advice, and assistance. I also thank and appreciate Dr. Douglas Alchin, a historian of science at the University of Minnesota for his valuable advice and conversations about teaching the nature of science by using history.

I also would like to extend my appreciation to the experts consulted on this research: Dr. Manus Boonprakorb, Dr. Kusulin Musikul, Dr. Nuttika Suwannasai, Dr. Saowalak Roma, Dr. Kanchulee Panyain, Dr. Sureeporn Kaewmuangmoon, and Ajarn Laongdao Pensuk. Specific gratitude goes to Dr. Prayong Pongthongchareon for his consultation and assistance in developing research instruments. I would Also like to thank the science teachers and students at Sri Ayudhya School and Bodindecha (Sing Singhaseni) 2 School.

I appreciate my original affiliation, the Faculty of Education, Chulalongkorn University for funding my graduate education. In addition, I would like to express my gratitude to professors at Srinakharinwirot University for their valuable guidance and generous assistance. Also, I appreciate my beloved friends and colleagues at the Science Education Center and the University of Minnesota for their support and encouragement.

Last but not least, I am grateful for the warm support and encouragement from my family. Especially, I cannot thank Major Konlayut Promratana enough for his support and kind assistance during difficult times.

Parinda Limpanont

Table of Content

Chapte	
1	Introduction
	Background
	Research questions
	Research objectives
	Significance of the study
	Scope and delimitation of the study
	Definition of terms
	Conceptual framework
	Research Hypothesis
2	Literature review
	The nature of science and science education
	What is the nature of science?
	The nature of science and science education
	The nature of science framework in this study
	Problems in understanding the nature of science
	Assessing understanding of the nature of science
	The nature of science in Thailand's science education
	Research related to the nature of science in Thailand
	Decision making
	Definitions and types of decision making
	Scope of decision making in this study
	Instruments to explore students' decision making on issues and
	dilemmas related to science
	Curriculum development
	Definitions of curriculum

Chap	Chapter		
2	2 (Continued)		
	Model of curriculum development		
	Integrated nature of science curriculum		
	Curriculum evaluation		
	Instructional approaches for NOS teaching		
	Historical based approach		
	Explicit–reflective approach		
	Learning activities and strategies		
	Group discussion		
	Structure reading or listening or watching to items which		
	involve stories of science		
	Role-playing		
	Handling controversial issues		
į	3 Research methods and procedures		
	Phase 1: Development and evaluation of the draft curriculum		
	Description of the integrated nature of science curriculum		
	Development of the integrated nature of science curriculum draft		
	Examining models of curriculum development		
	Developing the integrated nature of science curriculum		
	Evaluation by experts		
	Pilot study		
	Phase 2: Data collection and curriculum implementation		
	Research design		
	Participants		
	Research instruments		

apte	er	Pag
3	(Continued)	
	Instruments for exploring students' understanding of TNOS	-
	Instruments for exploring students' decision making on	
	science-based dilemmas	-
	Instrument for assessing students' achievement of genetics	
	understanding	,
	Data collection	
	Phase 3: Analysis of effects of the curriculum on students' learning	
	Students' understanding of TNOS	
	Levels of students' understanding of TNOS	
	Content of students' understanding of TNOS	
	Students' decision making on science-based dilemmas	
	Levels of students' decision makings on science-based	
	dilemmas	
	Content of students' decision making on science-based	
	dilemmas	
	Validity and trustworthiness of qualitative data collection and	
	analysis	
	Low-inference descriptions	
	Peer review	
	Data triangulation	
	Students' achievement of genetics understanding	
4	Research results	
7	Research results	
	Section 1: What are the components of the integrated nature of science	
ricul	um?	

Chapter		
4	(Continued)	
	Rationale of the curriculum	81
	Curriculum objectives	81
	Curriculum content	81
	Learning standards and learning indicators	82
	Instructional plans	82
	Assessment plan	83
	Section 2: What changes occur in students' understanding of TNOS	
	after the curriculum's implementation?	84
	Students' general views of science	84
	Students' understanding of the tentativeness of scientific	
	knowledge	88
	Levels of students' understanding of the tentativeness of	
	scientific knowledge	88
	Content of students' understanding of the tentativeness of	
	scientific knowledge	92
	Students' understanding of the process of science	98
	Levels of students' understanding of the process of science	98
	Content of students' understanding of the process of science	102
	Students' understanding of the subjectivity of scientific	
	conclusions	106
	Levels of students' understanding of the subjectivity of	
	scientific conclusions	106
	Content of students' understanding of the subjectivity of	
	scientific conclusions	109

Chapter	
4	(Continued)
	Students' understanding of the role of opinion and
	imagination in science
	Levels of students' understanding of the role of opinion and
	imagination in science
	Content of students' understanding of the role of opinion and
	imagination in science
	Students' understanding of relationship between science and
	society
	Levels of students' understanding of relationship between
	science and society
	Content of students' understanding of relationship between
	science and society
	Section 3: What changes occur in students' decision making after the
	curriculum implementation?
	Levels of students' decision making
	Content of students' decision making on science-based dilemmas
	Section 4: Do students who learn under the integrated nature of science
	Curriculum differ in their understanding of genetics from students who
	Learn in the conventional curriculum?
	Section 5: Examples of students' cases
5	Conclusions, discussions, and recommendations
	Research questions
	Research objectives
	Pasaarch procedures

Chapter	
5 (Continued)	
Conclusions and discussions of research findings	147
Recommendations	153
BIBLIOGRAPHY	
APPENDIX	165
VITAE	248

List of Figures

Figure		Page
1	Conceptual Framework for this study	12
2	TNOS framework for this study	22
3	Pattern of informal reasoning in socioscientific decision making	36
4	Procedure for planning NOS instruction using historical vignettes	50
5	Students' general views of science	86
6	Levels of student understanding of the tentativeness of scientific	
	knowledge	89
7	Levels of student understanding of the process of science	99
8	Levels of student understanding of the subjectivity in scientific	
	conclusions before and after the curriculum implementation	107
9	Levels of student understanding of the role of scientist's opinion	
	and imagination in science before and after the curriculum	
	implementation	115
10	Levels of student understanding of the relationship between science	
	and society before and after the curriculum implementation	121
11	Information student concern when making decisions divided into three	
	scenarios	131

List of Tables

Гab	le		Page
	1	Relationship between TNOS framework and McComas'	
		aspects of NOS	24
	2	Instruments for assessing understanding of the nature of science	26
	3	NOS tenet and guiding questions	48
	4	Examples of connection between history of genetics, genetic concepts,	
		and TNOS concepts	67
	5	Appropriateness of the draft curriculum	69
	6	Instruments and data collection	75
	7	Definitions of scoring students understanding of TNOS	76
	8	Learning units, contents, and instructional plans for TNOS curriculum	82
	9	Students' general views of science before and after the curriculum	
		implementation	85
	10	Levels of student understanding of the tentativeness of scientific	
		knowledge	88
	11	Students' different views of the tentativeness of scientific knowledge	
		before and after the curriculum implementation	93
	12	Levels of student understanding of the process of science	98
	13	Students different views of the process of science before and after	
		the curriculum implementation	102
	14	Levels of student understanding of the subjectivity in scientific	
		conclusions before and after the curriculum implementation	106
	15	Students' different views of the subjectivity in scientific	
		conclusions before and after the curriculum implementation	110

List of Tables (Continued)

Table		Page
16	Levels of student understanding of the role of scientist's opinion	
	and imagination in science before and after the curriculum	
	implementation	114
17	Students' different views of the role of scientist's opinion	
	and imagination in science before and after the curriculum	
	implementation	118
18	Levels of student understanding of the relationship between science	
	and society before and after the curriculum implementation	120
19	Students' different views of the relationship between science	
	and society before and after the curriculum implementation	123
20	Levels of students' decision divided into three scenarios	127
21	Information student concern when making decisions divided into three	
	scenarios	130
22	Comparison of scores of student achievement in genetics understanding	
	before and after the curriculum implementation	136
23	Comparison of the integrated nature of science curriculum class and the	
	conventional curriculum class scores in achievement of genetics	
	understanding	137

CHAPTER 1

INTRODUCTION

1. Background

The phrase "nature of science" (NOS) is typically used to refer to issues such as what science is, how science works, how scientists operate as a social group, and how society itself both influences and reacts to scientific endeavors (Clough. 2009). It also refers to the values and assumptions inherent in scientific knowledge and the development of scientific knowledge (Lederman; & Lederman. 2004).

For the past century, NOS has been evident worldwide in science education as seen in the science education standards and research documents of many countries (Baojaoude. 2002; Hind, Leach; & Ryder. 2001; IPST. 2001; Irez. 2006; Liu; & Lederman. 2007; Martin-Diaz. 2006; McComas; & Olson. 1998; McNay. 2000; Sahin; Deniz; & Gorgen. 2006). Understanding NOS, together with sufficient knowledge of science content, thinking skills, and the ability to conduct science—like research has been seen as a way to prepare citizens for living in a world in which science and technology so significantly impact human lives (American Association for the Advancement of Science (AAAS). 1993; Institute for Promotion of Science and Technology (IPST). 2003; Lonsbury; & Ellis. 2002).

By living in a society that impacts and is impacted by science, citizens need the ability to confront and deal with dilemmas and controversial points related to science so as to be able to make either personal or public decisions on these matters (Driver; et al. 1996; Duncan; & Arthurs. 2009; Lonsbury; & Ellis. 2002; Osborne; et al. 2001; Sadler; Chambers; & Zeidler. 2004). When making personal decisions, a person may deal with dilemmas related to science such as whether a scientific claim in public media should be trusted or whether a new technology or new medical treatment should be used (Phillips. 1999). Similarly, decisions concerning social issues such as political battles over global warming, fossil fuels, and polluted drinking water are unavoidable in a democratic society (Lonsbury; & Ellis. 2002).

Consequently, aspects of NOS that need to be taught to enable citizens to make appropriate decisions on such matters have been discussed by science educators. But features of NOS have been described differently in global science education standards. Among various NOS features, a characteristic of science that is frequently mentioned and considered to be one of the most critical features of NOS is the tentative nature of science (TNOS). The reason is that TNOS acknowledges that science has limitations and is not the absolute truth. Rather, it is subject to both revolutionary and evolutionary change (Osborne; et al. 2001). The tentative character of science is also considered to be a central aspect that is connected to other aspects of NOS, including the notions that: (a) scientific knowledge has a basis in empirical evidence; (b) empirical evidence is collected and interpreted based on current scientific perspectives (subjectivity, or theory-laden observations and interpretations) as well as personal subjectivity due to scientists' values, knowledge, and prior experiences; (c) scientific knowledge is the product of human imagination and creativity; and (d) the direction and products of scientific investigations are influenced by the society and culture in which the science is conducted (sociocultural embeddedness) (Schwartz; & Lederman. 2002).

For the current study concepts regarding TNOS were derived from a literature review. The concept of TNOS is rooted in the statement that science is subject to change due to its epistemology being based on observations and interpretations that are subject to revision whenever new evidence is discovered. Additionally, the process of observation and interpretation is not separate from the sociocultural context, which shapes the values underlying science as well as the beliefs and perspectives of individual scientists as to what natural phenomena should be observed and perceived.

The stated framework of TNOS is inconsistent with some other ideas about how science should be taught to help students make decisions about scientific dilemmas. Raising consciousness regarding TNOS involves examining the epistemological, sociocultural, and individual scientists' perspectives, biases, and idiosyncrasies. Similar characteristics of science were also discussed by Osborne and others (2001) as they aimed to prevent people perceiving science as an absolute truth. The concern is that citizens who

believe that scientific knowledge is absolute without acknowledging its tentative nature, how it is produced, and how it is evaluated will be too dependent on the knowledge of experts and not think critically when making decisions on science-based matters.

There are not many in-depth studies on this particular feature of science. Numbers of research studied about NOS in general and regarding problems are founded. Ryan and Aikenhead (1992) found that one-half of high school students tended to construct their personal understanding of phenomena and call it "science." They also believed that science can be altered by supernatural beings. Moreover, 34% of students thought that scientific theory represents a reality that was discovered by scientists instead of merely being invented. Also, 40% of students thought that many discoveries occurred by accident. Such misconceptions are harmful to students since they could easily make them vulnerable to fallacious arguments and cause them difficulties in understanding scientific concepts (Ryan; & Aikenhead. 1992). Additionally, after examining adult respondents' decision making on science and technology based issues, it was found that TNOS played only an insignificant role for a minority of respondents and no clear role at all for the majority. Rather, participants based their decisions primarily on personal values, morals/ethics, and social concerns (Bell; & Lederman. 2003).

Consequently, suggestions for improving understanding of NOS and using it in making decisions have focused on creating curricula and instructional material that explicitly address how to integrate current views of NOS into decision making. Curricula promoting this kind of instruction should emphasize the relevance of having a firm grasp of NOS on students' everyday experiences and decisions, as well as providing opportunities for students to use their understanding to make decisions on science—based dilemmas and controversial issues (Bell; & Lederman. 2003; Sadler; Chambers; & Zeidler. 2004; Zeidler; et al. 2002). As a result, it has been suggested that instruction in NOS be integrated into science course curricula so that students will be able to understand and talk about NOS concepts with regard to particular issues or particular pieces of evidence (Brickhouse; et al. 2000; Duncan; & Arthurs. 2009; Johnston; & Southerland. 2002). To teach NOS as part and parcel of science content, a historical—based approach has been highly recommended

for creating NOS instructional material. The historical-based approach connects NOS concepts to particular topics of science content, contextualizes this content by placing it within the life and times of individual scientists, traces the development of scientific knowledge, and explains the social context of science, thus making scientific concepts less abstract to students (Abd-El-Khalick; & Lederman. 2000; Bybee; Powell; & Ellis. 1991; Lonsbury; & Ellis. 2002; Matthews. 1994; Olson; et al. 2005; Veal. 2004; Wandersee; & Roach. 1998).

Similar to science education in other countries, education in Thailand has had long attempted to promote student understanding regarding NOS-related ideas. NOS became more strongly emphasized when it was included as part of the educational aims as well as becoming a content sub-strand of the current national curriculum. Furthermore, the Thai National Basic Curriculum and the instruction handbook for teachers recommends that teachers integrate concepts of NOS into every science content area (IPST. BE 2546).

The student should be able to **use** the scientific process and a scientific mind in investigation to **solve** problems, to **realize** that most natural phenomena have definite patterns explainable and verifiable within the limitations of data and instrumentation during the period of investigation, and to **understand** that science, technology and the environment are interrelated.

Sub-strand 8: Nature of Science and Technology (IPST. BE 2546)

Considering the connection between the National Basic Curriculum and the concepts of TNOS mentioned above, it can be seen that the National Basic Curriculum strongly emphasizes the epistemology of science by citing it in relation to scientific investigation. It also includes coverage of the sociocultural context of science by stating that students are to understand that science, technology, and the environment are interrelated. However, the influences of varying perspectives and biases of individual scientists in conducting research are not addressed in the standards.

Additionally, a research study has found that Thai science teachers tend to teach NOS mostly within the aspect of scientific inquiry, which focuses on the use of skills in the

scientific process, scientific methods, and scientific attitude. Emphasis on scientific enterprise and the nature of scientific knowledge is rarely found. Aspects of NOS were implicitly addressed, mainly through lectures. Moreover, aspects of NOS are often taught separately from typical science content. When participating teachers were asked why they taught aspects of NOS, they respond that they followed what was written in the curriculum guidelines (Limpanont. 2004). From these research results, it should be a concern that when teachers do not address the nature and limitations of scientific knowledge and scientific enterprise, their students may fail both to develop concepts of NOS and to use such concepts to help in making proper decisions about science and technology.

Similarly, Meesri (2007) found that during classroom observations, aspects of NOS were not clearly integrated into teaching activities nor into teachers' teaching plans. Although teachers sometimes used hands—on activities, the concepts of NOS were rarely found being explicitly taught or emphasized. It was also found that most teachers felt that they did not clearly understand what NOS was and had low confidence to teach this topic.

It can be seen that explicitly addressing NOS in science curricula is an important issue both nationally and internationally. Given that scientific literacy depends on people being able to call upon their understanding of NOS while making personal and social decisions implies that curricula that promote the effective use of NOS need to be developed and tested. Although there are arguments about just what constitutes a curriculum, the present study considers a curriculum to be a written document that indicates what is to be learned.

The design of a curriculum as described above must be articulated in terms of the instructional/teaching methods that will be used. In order to teach NOS effectively, it is strongly suggested that concepts of NOS be addressed explicitly in curriculum and instruction (Akerson; et al. 2000; Lederman. 1992; Schwartz; & Lederman. 2001). Also, NOS concepts should be integrated into science content so that students know that NOS and scientific knowledge are not separate entities. Thus, when students learn about a particular scientific concept, they will also learn where that concept came from, how it was

discovered, why it is trustworthy, and what are its limitations (Johnston; & Southerland. 2002).

As stated above, science education at both international and national levels is expected to go beyond students understanding science content. The goal of science education is to prepare citizens for living in a science and technology based society by helping them make social and personal decisions wisely by considering the nature and limitations of science. In order to achieve the goal, curricula and instructional material that explicitly address NOS, the uses of NOS, and efficient standards of NOS learning must be developed and tested. Therefore, the present study attempts to develop a curriculum that integrates the ideas of NOS, with special attention to TNOS concepts, into science content by using the history of science as an integration tool. In order to bring the curriculum into practice, this research will not only provide instructional plans and materials to help teachers use this curriculum to teach TNOS effectively but also provide procedures that teachers can use as guidelines for developing TNOS-related instructional material by themselves.

As for the science content to be used for developing the integrated NOS curriculum, genetics is considered to be the discipline of science that is rapidly advancing and impacting humans' lives and society nowadays (Bunton. 2001). Therefore, it is a suitable subject for integration with TNOS and for testing how the concepts of TNOS can be taken into account when a person is confronted with science—based dilemmas related to genetics and associated technologies. TNOS concepts, although very important concepts that should be taught to students at all ages, are somewhat abstract and thus require a modicum of maturity for students to be able to understand and discuss them. Therefore, the lower secondary level is considered to be the most appropriate level for developing this curriculum.

In this study, TNOS concepts and genetics content from the conventional genetics unit in the lower secondary level were used to demonstrate how to integrate NOS into the existing content of the science curriculum. The intention was to explore how the integrated

curriculum affected students' understanding of TNOS, their decision making on science—based dilemmas, and their understanding of genetics.

2. Research questions

This study has the following research questions:

- 2.1 What are the components of the integrated nature of science curriculum?
- 2.2 What changes occur in students' understanding of TNOS after the curriculum is implemented?
- 2.3 What changes occur in students' decision making on science—based dilemmas after the curriculum is implemented?
- 2.4 Do students who learn under the integrated nature of science curriculum differ in their understanding of genetics from students who learn in the conventional curriculum?

3. Research objectives

The objectives of this research were to develop and explore the effects of the integrated nature of science curriculum in terms of

0000000

- 3.1 Students' understanding of TNOS
- 3.2 Students' decision making on science-based dilemmas
- 3.3 Students' achievement of genetics understanding

4. Significance of the study

This research provides an effective science curriculum and instructional plans that clearly demonstrate the concepts of TNOS without separating it from science content. The curriculum enhances students' understanding of TNOS and helps them take into account TNOS when making decisions on science-based dilemmas. The completed version of this curriculum can be used to teach students in different grade levels or in other schools by adjusting it to fit particular circumstances. Also, this curriculum represents an effective way to teach NOS that may help encourage teachers to address more NOS concepts in their classes. In addition, this process of curriculum development can be used by educational institutes and educational researchers in developing curricular related to NOS ideas.

5. Scope and delimitation of the study

Participants/Site

The participants of this study were two classrooms of 9th grade students in a lower secondary school in the Secondary Educational Service Area Office I under the Office of the Basic Education Commission in Bangkok, Thailand.

Variables

This research intended to invent a curriculum that integrates ideas of TNOS into genetics content. The research questions consider the effects of the developed curriculum on student learning in terms of their understanding of TNOS and their uses of TNOS in decision making. Although variables used in this study are addressed below, the research is not limited to quantitative data. Rather, it also intended to gather qualitative data about how the implementation of the curriculum affects student learning in terms of their understanding of TNOS and their decision making on science—based dilemmas. This research studied the effects of the curriculum on students' achievement of genetics understanding. The variables of this research are addressed below:

Independent variable

The implementation of the integrated nature of science curriculum

Dependent variables

- 1) Students' understanding of TNOS
- 2) Students' decision making on science-based dilemmas
- 3) Students' achievement of genetics understanding

6. Definition of terms

Integrated nature of science curriculum is the written document that indicates the understanding and skills that students are expected to develop by combining ideas of TNOS with a traditional science subject.

Tentative nature of science (TNOS) consists of the targeted NOS aspects being studied in this study that focus on the character of science that is subject to change. The tentative character is result of 3 dimensions: epistemology in science, social and cultural context, and individual scientists. These dimensions are all bound to each other and cannot be separated. The three dimensions that effect the tentative nature of science are summarized below:

Dimension 1: Epistemology of science is the dimension that involves the process to producing scientific knowledge that relies on observation and interpretation.

Dimension 2: Social and cultural context of science is the dimension that involves the way that science impacts and is impacted by society and culture.

Dimension 3: Individual scientists is the dimension that involves the impacts of the human factor in science.

Science-based dilemma is a science-related issue that has generated considerable debate and disagreement about causes, theories, evidence, and effects from its application and which requires a person to make a choice between alternative courses of action or argument.

Historical-based approach is an instructional approach for teaching the nature of science by using historical narratives about the lives and methods of scientists, the development of scientific knowledge, and the social context of science

Explicit-reflective approach is an instructional approach for teaching the nature of science by clearly stating specific nature of science learning objectives and creating instructional activities in order to reach the stated targets together with allowing students to reflect on their views of the nature of science through questioning and discussion.

Understanding of the tentative nature of science (TNOS) refers to students' abilities to describe, explain, and give examples about TNOS by reflecting on the tentative nature of science questionnaire and the interview protocol developed in this study.

Decision making on science-based dilemmas refers to students' abilities to make a choice between alternative courses of action or arguments on problems related to science and technology by taking into account TNOS concepts that can be explored by using decision-making questionnaires and interview protocols developed in this study.

Achievement of genetics understanding refers to students' abilities to describe, explain, give specific examples, and draw logical conclusions related to concepts in genetics that can be examined by the test on genetics understanding developed in this study.

7. Conceptual framework

One of the most important goals in science education is to promote student understanding of NOS with the intention of educating students to become wise consumers and to think critically when making decisions in today's science and technology-based society. However, this goal has not yet been achieved. Students tend to lack adequate understanding of NOS, and some NOS aspects are neglected in school science curricula. Such problems stem from many causes, including the facts that some aspects of NOS are not clearly emphasized in the curriculum and that teachers have difficulty in putting NOS learning into practice.

This research draws on the concepts of the tentative nature of science (TNOS) that connects several important aspects of NOS and puts them under one theme, TNOS. The theme is divided into three dimensions—epistemology of science, sociocultural context, and individual scientists—to point out the connection between aspects that will help students learn about the NOS in a meaningful way and understand that all aspects represent one entity of science. This theme is used in developing a curriculum that integrates TNOS concepts into genetics in a conventional science course curriculum.

The integrated nature of science curriculum, together with instructional approaches that were designed by using several suggested approaches to the NOS teaching, including a historical-based approach and an explicit-reflective approach, enhanced students' understanding of TNOS and their ability to take into account TNOS aspects when they

made decisions on science-based dilemmas. Finally, the process for developing integrated NOS curriculum that resulted from this research will help teachers in developing further school curricula and instructions related to NOS.

The conceptual framework of this research is illustrated in FIGURE 1.

8. Research Hypothesis

The hypothesis of this research is:

Students' genetics understanding achievement scores in the group that learns in the integrated curriculum will be higher than those of the group that learns in the conventional school science curriculum with a statistically significant difference.

Science Education goals State/Problem - Students lack of NOS understanding Student understanding of the nature of Aspects of NOS are being neglected in school science - Students do not take into account NOS when making Students taking into account the nature of decisions on science-based issues/dilemmas science when making decision on sciencebased issues/dilemmas Analyzing problems - Some aspects of NOS are not clearly emphasized in the Solution: Development of the integrated nature of science curriculum consisting of 7 - Difficulties in bringing ideas of teaching NOS into practice stages, as follows: 1. Gathering basic information and developing initial ideas 2. Setting a curriculum direction Curriculum approach 3. Developing a curriculum rationale Integration of TNOS concepts and genetics content 4. Refining intended learning outcomes 5. Forming and organizing units of the curriculum Developing general teaching strategies Instructional approach 7. Planning a curriculum evaluation Historical-based approach Explicit-reflective approach The Implementation of the Integrated Nature of Science Curriculum and Instructional Materials Dependent variable Research Design Independent variable Students' understanding of tentative The Control-Group Pretest-Implementation of the curriculum nature of science Posttest Design was used to Students' decision making on scienceassess the effectiveness of the based dilemmas curriculum Students' achievement of genetics understanding Results Result 1 Result 2 Integrated nature of science curriculum and Student understanding of NOS instructional materials that is effective in teaching NOS Students concern of NOS when making decision integrated into science content Student understanding of science content in Process for developing integrated NOS C&I that can genetics

FIGURE 1 CONCEPTUAL FRAMEWORK FOR THIS STUDY

be used by others

CHAPTER 2

LITERATURE REVIEW

The literature reviewed here is related to curriculum development and the nature of science and addresses the following topics:

- 1. The nature of science and science education
- 2. Decision making on science-based dilemmas
- 3. Curriculum development
- 4. Instructional approaches to teaching the nature of science

1. The nature of science and science education

1.1 What is the nature of science?

Since teaching the nature of science (NOS) has become more widespread, the question "What is the nature of science?" has arisen among those involved in science education. The meaning of the phrase "the nature of science" has long been discussed among philosophers of science and science educators because of its abstract nature. However, most have agreed that the study of NOS must involve epistemology, sociology, philosophy, and history. Typically, the purpose of studying NOS is to answer the questions: "What is science?," "How does science work?," "How do scientists work as a social group?," and "How does society react to scientific enterprises?" (Alter. 1997; Johnston; & Southerland. 2002; Lederman. 1992; Lederman et al. 2002; McComas. 2000).

Interestingly, arguments about NOS have been rising over time. Confronting the problem of the abstract meaning of NOS, international science education communities have attempted to use defensible definitions as the best way to describe its meaning. For example, science textbooks in the past explain the scientific method as the step-by-step process of acquiring scientific knowledge that includes the discrete stages of identifying problems, gathering data, creating hypotheses, observing, testing hypotheses, and making

conclusions. However, after re–evaluating the process by examining the variety of methods that scientists actually use in their work, science educators found that a universal scientific method does not exist and so should be removed from science textbooks (Collete; & Chiappetta. 1994; Lederman et al. 2000; McComas. Clough; & Almarozoa. 2000; Sund; & Trowbridge. 1973; Thurber; & Collete. 1964).

Furthermore, Alters (1997) investigated whether the tenets of science education were also held by philosophers of science and found that the philosophers in his survey expressed significant disagreements with the tenets. Therefore, the tenets that have been traditionally advocated as basic criteria for science education's treatment of "the nature of science" need to be reconsidered so that more accurate criteria might be developed for future nature of science research. Consequently, science educators responded by pointing out the problem with the Alters survey itself, which seemed to "stack the deck to make disagreement among respondents". These critics insisted that K–12 teachers should ignore Alters' biased study (Smith et al. 1997).

Although there is no single nature of science definition that can describe fully the idea of scientific knowledge and enterprise, various representations of NOS have been affirmed by historians, philosophers, science educators and others (Lederman. 1992). Therefore, international science education documents state terms and standards of NOS using different descriptions although they share relevance in meaning. McComas (1998: 6–7) proposed 14 aspects of NOS that represent a consensus view of the NOS objectives extracted from international science standards documents. These aspects are:

1) Scientific knowledge while durable, has a tentative character

The development of scientific knowledge is continuous and stable. Most scientific knowledge is durable. The modification of ideas, rather than their outright rejection, is the norm in science, as powerful constructs tend to survive and grow more precise and become more widely accepted. However, scientific knowledge is never absolute or certain. The tentativeness of science is caused by the process of producing knowledge that depends on both making careful observations of phenomena and on inventing theories for making sense out of those observations. It is unavoidable that new observations may

challenge prevailing theories and that new theories will be created. Tentativeness in science is not just a character of theory but also a character of every kind of scientific knowledge including facts, hypotheses, theories, and laws (AAAS. 1997; Lederman. 2006; McComas. 1998).

Indeed, scientific knowledge can never be "proven." For example, to be "proven," a certain scientific law should account for every single instance of the phenomenon it purports to describe at all times. It can logically be argued that one such future instance, of which we have no knowledge whatsoever, may behave in a manner contrary to what the law states (Popper. 1963 citing Lederman. 2006).

2) Scientific knowledge relies heavily, but not entirely, on observation, experimental evidence, rational arguments, and skepticism.

Validity of scientific claims is settled by referring to observations of phenomena. Hence, scientists concentrate on getting accurate data. Such evidence is obtained by observations and measurements taken in situations that range from natural settings (such as a forest) to completely contrived settings (such as the laboratory). One of the useful tools in science is an experiment that involves organized procedures accompanied by control and test groups. Usually, experiments have a primary goal of establishing cause and effect relationships. However, in some circumstances, scientists cannot precisely control the conditions of what they study. In some science disciplines, true experimentation is impossible because of an inability to control all variables. Such is the case in astronomy and evolutionary studies (AAAS. 1997; McComas. 1998).

Even though scientific knowledge is, at least partially, based on and/or derived from observations of the natural world (i.e., empirical), it nevertheless involves human imagination and creativity. Science, contrary to common belief, is not a totally lifeless, rational, and orderly activity. Science involves the *invention* of explanations, and this requires a great deal of creativity by scientists. This aspect of science, coupled with its inferential nature, entails that scientific concepts, such as atoms, black holes, and species, are functional theoretical models rather than faithful copies of reality (Lederman. 2007).

3) There is no one way to do science (therefore, there is no universal stepby-step scientific method)

Scientific inquiry refers to systematic approaches used by scientists in an effort to answer their questions of interest. However, a universal scientific method does not exist. There is no fixed set of steps that scientists always follow, no one path that leads them unerringly to scientific knowledge. In their works, scientists may raise new problems multiple times and state many hypotheses in order to get answers for their questions (AAAS. 1997; Collette; & Chiappetta. 1994; Lederman. 2002; Lederman. 2006; McComas. 1998; Sund; & Trowbridge. 1973; Thurber; & Collete. 1964).

Different disciplines conduct investigations in different ways. For example, astronomers make systematic observations of the objects they see in the sky. However, they cannot control the behaviors of celestial bodies and so most of their research is descriptive in nature. Similarly, environmental scientists study relationships among inorganic and organic components of the environment. But they also cannot do classical experimentation because they cannot control the environment. On the other hand, chemists can easily control levels of various compounds in their laboratories and assess the effects of changing the amount of one of the compounds in a system (Crowther, Lederman; & Lederman. 2005).

4) Science is an attempt to explain natural phenomena

Science presumes that the things and events in the universe occur in consistent patterns that are comprehensible through careful, systematic study. Scientists believe that through the use of the intellect, and with the aid of instruments that extend the senses, people can discover patterns in all of nature. Science also assumes that the universe is, as its name implies, a vast single system in which the basic rules are everywhere the same. Knowledge gained from studying one part of the universe is applicable to other parts (AAAS. 1997).

5) Laws and theories serve different roles in science; therefore students should note that theories do not become laws even with additional evidence.

Theories and laws are very different kinds of knowledge, but the misconception portrays them as different forms of the same knowledge construct. Individuals often hold a simplistic, hierarchical view of the relationship between theories and laws whereby theories become laws, depending on the availability of supporting evidence. It follows from this notion that scientific laws have a higher status than scientific theories. Both notions, however, are inappropriate because, among other things, theories and laws are different kinds of knowledge, where one notion does not develop or become transformed into the other (Lederman. 2007; McComas. 1998).

Laws are statements or descriptions of the relationships among observable phenomena. Boyle's law, which relates the pressure of a gas to its volume at a constant temperature, is a case in point. Theories, by contrast, are inferred explanations for observable phenomena (e.g., kinetic molecular theory provides an explanation for what is observed and described by Boyle's law). Scientific models are common examples of theory and inference in science. Moreover, theories are as legitimate a product of science as laws. Scientists do not usually formulate theories in the hope that one day they will acquire the status of "law." (Lederman. 2007).

6) People from all cultures contribute to science.

Scientific work involves many individuals doing many different kinds of work and occurs to some degree in all nations of the world. Men and women of all ethnic and national backgrounds participate in science and its applications. These people—scientists and engineers, mathematicians, physicians, technicians, computer programmers, librarians, and others—may focus on scientific knowledge either for its own sake or for a particular and practical purpose. They may be concerned with data gathering, theory building, instrument building, or communicating (AAAS. 1997).

7) New knowledge must be reported clearly and openly.

Because of the social nature of science, the dissemination of scientific information is crucial to its progress. Some scientists present their findings and theories in papers that are delivered at meetings or published in scientific journals. Those papers enable scientists to inform others about their work, to expose their ideas to criticism by

other scientists, and to stay abreast of scientific developments around the world (AAAS. 1997).

8) Scientists require accurate record keeping, peer review, and replicability.

The strongly held traditions of accurate recordkeeping, openness, and replication, buttressed by the critical review of one's work by peers, serve to keep the vast majority of scientists well within the bounds of ethical, professional behavior (NSTA. 2000).

9) Observations are theory-laden.

Scientists' theoretical commitments, beliefs, previous knowledge, training, experiences, and expectations actually influence their work. All of these background factors form a *mind*—set that affects the problems scientists choose to investigate, how they conduct their investigations, what they observe (and do not observe), and how they make sense of and interpret their observations. It is this (sometimes collective) individuality or mindset that accounts for the role of subjectivity in the production of scientific knowledge. It is noteworthy that, contrary to common belief, science rarely starts with neutral observations. Observations (and investigations) are motivated and guided by, and acquire meaning in reference to, questions or problems. These questions or problems, in turn, are derived from within certain theoretical perspectives. Oftentimes hypothesis or model testing serves as a guide to scientific investigations (Lederman. 2007).

10) Scientists are creative

Creativity is a vital, yet personal, ingredient in the production of scientific knowledge. Scientists do not work only with data and well-developed theories. Often, they have only tentative hypotheses about the way things may be. Inventing hypotheses or theories to imagine how the world works and then figuring out how they can be put to the test of reality is as creative as writing poetry, composing music, or designing skyscrapers. Sometimes discoveries in science are made unexpectedly, even by accident (AAAS. 1997; Lederman. 2002).

11) The history of science reveals both an evolutionary and revolutionary character.

With new evidence and interpretation, old ideas are replaced or supplemented by newer ones. The modification of ideas, rather than their outright rejection, is the norm in science, as powerful constructs tend to survive and grow more precise and to become widely accepted. For example, in formulating the theory of relativity, Albert Einstein did not discard the Newtonian laws of motion but rather showed them to be only an approximation of limited application within a more general concept. (The National Aeronautics and Space Administration uses Newtonian mechanics, for instance, in calculating satellite trajectories.) Moreover, the growing ability of scientists to make accurate predictions about natural phenomena provides convincing evidence that we really are gaining in our understanding of how the world works (AAAS. 1997; NSTA. 2000).

12) Science is part of social and cultural traditions.

Science as a human enterprise is practiced in the context of a larger culture, and its practitioners (scientists) are the product of that culture. Science, it follows, affects and is affected by the various elements and intellectual spheres of the culture in which it is embedded. These elements include, but are not limited to, social fabric, power structures, politics, socioeconomic factors, philosophy, and religion. The practice of acupuncture, for example, was not accepted by Western science until Western science explanations for the success of acupuncture could be provided (Lederman. 2007).

13) Science and technology impact each other.

The advancement of information science (knowledge of the nature of information and its manipulation) and the development of information technologies (especially computer systems) affect all sciences. Those technologies speed up data collection, compilation, and analysis, make new kinds of analysis practical, and shorten the time between discovery and application (AAAS. 1997).

14) Scientific ideas are affected by their social & historical milieu.

The direction of scientific research is affected by informal influences within the culture of science itself, such as prevailing opinion on what questions are most

interesting or what methods of investigation are most likely to be fruitful. Elaborate processes involving scientists themselves have been developed to decide which research proposals receive funding, and committees of scientists regularly review progress in various disciplines to recommend general priorities for funding. Moreover, when faced with a claim that something is true, scientists respond by asking what evidence supports the claim. But scientific evidence can be biased in how the data are interpreted, in the recording or reporting of the data, or even in the choice of what data to consider in the first place. Scientists' nationality, sex, ethnic origin, age, political convictions, and so on may incline them to look for or emphasize one or another kind of evidence or interpretation (AAAS. 1997).

With regard to McComas, Lederman (2002) suggests the summarized and central aspects of NOS are tentative, or subject to change and revision. Reasons for the inherent tentativeness of science stem from several other aspects including the facts that:

(a) scientific knowledge has a basis in empirical evidence; (b) empirical evidence is collected and interpreted based on current scientific perspectives (subjectivity, or theory—laden observations and interpretations) as well as personal subjectivity because of scientists' values, knowledge, and prior experiences; (c) scientific knowledge is the product of human imagination and creativity; and (d) the direction and products of scientific investigations are influenced by the society and culture in which the science is conducted (sociocultural embeddedness).

1.2 The nature of science and science education

Science impacts individuals and society since it affects humans in their daily routine and professions. The applications of scientific knowledge together with scientists' creativity bring us tools and instruments that make living and working easier. Moreover, science helps people to develop thinking skills that are important in making knowledge—based inquiries. Since science has become pervasive in today's world, it is crucial to foster people's scientific literacy (IPST. 2001).

The impact of science on our lives tends to be stronger over time. Nowadays political controversies related to science and technology have been rising. We are

confronted with environmental issues, concerns about biological, chemical and nuclear weapons, and pathogens, and economic development. Additionally, technologies such as computers and the Internet are becoming regular means of communicating, accessing information, and interacting in the modern world and almost impossible to avoid in our daily activities (Lonsbury; & Ellis. 2002).

Consequently, the nature of science (NOS) has become the major target of science education as it is able to help students understand the inner-workings of science—based knowledge and science's underlying epistemic value, methods, and institutional practices, the understanding of which is essential for members of society to be able to digest scientific information and make judgments about new scientific discoveries and their applications in contemporary society (Osborne et al. 2002; Lederman. 1999).

1.3 The nature of science framework in this study

The intention of this study is to develop curriculum that enhances students' understanding of the tentative nature of science. This is necessary in order to alert students to the fact that scientific claims are well grounded and very stable, but that sometimes an established scientific idea can change. Students also need to know that there are factors that influence scientific endeavors and cause error in science. Therefore, students need to consider these factors when they judge whether a new scientific claim is reliable and trustworthy.

Concerning the intention of the curriculum, this study considers the tentative character of science as the most critical component, the defining and central theme. The Tentative Nature of Science (TNOS) framework in this study represents features of NOS in 3 dimensions: epistemology in science, social and cultural context, and individual scientists. This framework shows that the tentative character of science is caused by more than one factor. These factors are all bound to each other and cannot be separated, as shown in FIGURE 2.

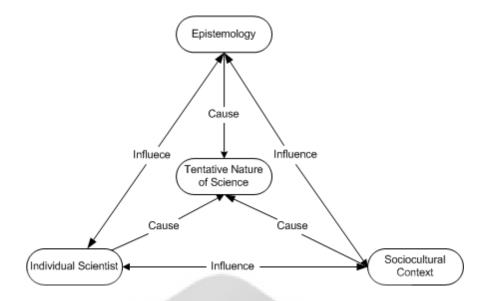


FIGURE 2 TNOS FRAMEWORK FOR THIS STUDY

Tentative nature of science

Science is a well developed and trustworthy endeavor to explain natural phenomena. Most scientific knowledge is durable because the development of science is unending. However, scientific knowledge can never be absolute or certain because the process of producing knowledge depends on observations and making sense of those observations, even in light of new evidence.

Dimension 1: Epistemology in science

There is no single, guaranteed method of science. The foundation of most scientific endeavors is the collection and interpretation of individual facts.

1) Observation and collection of data

Science involves observation and empirical evidence. Scientists observe phenomena and collect data to be used as evidence in scientific claims. There is a variety of factors that affect scientific observation such as perspective, prior knowledge, skill, and the experience of the individual scientist. These factors affect the scientist's decisions about what phenomena to observe or what data to collect. Therefore, even when two scientists observe a phenomenon at the same time, they may get different observational results. Furthermore, social and cultural context affects scientific observation and data collection in the context of scientific funding. Scientific research that is provided

with adequate financial support likely utilizes high quality instruments to help scientists observe and collect data more accurately. As a result of the realities of cost, new scientific ideas need to be evaluated within the scientific community in order to appropriate the limited financial resources that are available. It is further possible that there might be new observed phenomena that cannot be explained by any currently accepted idea. In this case, the scientific idea might be rejected or modified to make it more palatable to the current mindset of the scientific community.

2) The role of interpretation in science

After gathering data from observation, scientists need to interpret data to arrive at a conclusion and generate new knowledge. The process of interpretation in science depends on perspective, prior knowledge, creativity, and personal experience of individual scientists and also must take into account the cultural context and the theories accepted in the scientific community at that time. Therefore, scientific knowledge is not totally objective, but is rather subject to change, with scientists modifying their conclusions as new evidence is gathered.

Dimension 2: Social and cultural context of science

1) Influence of social and cultural context on science

Society and culture affect science in several ways. One way is that society and culture frame scientists' thinking and beliefs. A theory accepted in scientific society at a particular time can affect the way a scientist observes and interprets phenomena. Besides, society and culture are factors that set the value of scientific endeavor and determine what research should be supported or should be discarded. Given such a constraint, bias and error may occur and cause science to be tentative.

2) Influence of science on society and culture

Scientific knowledge can be applied to benefit society and culture. However, applying new scientific knowledge may cause unexpected effects. Society needs to deal with such consequences that might arise. In order to be supported, scientists may be biased in the way they interpret and report their research such as through hiding negative effects that the research has revealed.

Dimension 3: Individual scientists

Scientists are like those individuals in any other profession. They have personal beliefs, experiences, prior knowledge, and moral and ethical values. These characteristics affect a scientist's work. For example, belief and prior knowledge that scientists carry might frame their thoughts when they make observations and interpret data. In some cases, a scientist's experience and skill affect him or her when using instruments in their research. Additionally, scientists can be fallible as a result of their emotions and personal lives. These personal characteristics influence scientists in their work and cause increased subjectivity. Consequently, when two scientists with the same expertise review the same facts, there is no guarantee that they will reach the same conclusion.

The TNOS framework is related to many of McComas's consensus aspects of NOS (McComas. 1998), as shown in TABLE 1 below:

TABLE 1 RELATIONSHIP BETWEEN TNOS FRAMEWORK AND MCCOMAS' ASPECTS
OF NOS

TNOS framework	McComas' aspects of NOS	
Tentative theme	-Scientific knowledge while durable, has a tentative	
	character	
Dimension 1: Epistemology of	-Scientific knowledge relies heavily, but not entirely, on	
science	observation, experimental evidence, rational arguments,	
	and skepticism.	
	-There is no one way to do science.	
Dimension 2: Sociocultural	-Science is part of social and cultural traditions.	
context	-Science ideas are affected by their social and historical	
	milieu.	
Dimension 3: Individual	-Science requires accurate record keeping, peer review.	
Scientist	and replicability.	
	-Observations are theory laden.	
	-Scientists are creative.	

1.4 Problems in understanding the nature of science

Teaching aspects of NOS is not innovative in science education. Science curricula in many countries have concentrated on scientific methods and the scientific process, key parts of the NOS. For the United States, educational focus on the NOS can be seen since at least 1907 in the form of curricula that concentrated on scientific methods and scientific processes. Later in 1920, NOS was clearly stated in science education goals, and since 1960, NOS has been connected to scientific inquiry and became even more important when the American Association for the Advancement of Science (AAAS. 1998) identified NOS as one key aspect of scientific literacy (Lederman. 1992).

However, numerous research publications present problems in NOS education, stating instances where students have misconceptions of NOS. McComas (2000) used his own teaching experience and a review of countless texts to summarize these misconceptions and found the following 15 common myths associated with understanding the Nature of Science:

- 1) Hypotheses become theories that in turn become laws.
- 2) Scientific laws and other such ideas are absolute.
- 3) A hypothesis is an educated guess.
- 4) A general and universal scientific method exists.
- 5) Evidence accumulated carefully will result in sure knowledge.
- 6) Science and its methods provide absolute proof.
- 7) Science is procedural more than creative.
- 8) Science and its methods can answer all questions.
- 9) Scientists are particularly objective.
- 10) Experiments are the principal route to scientific knowledge.
- 11) Scientific conclusions are reviewed for accuracy.
- 12) Acceptance of new scientific knowledge is straightforward.
- 13) Science models represent reality.
- 14) Science and technology are identical.
- 15) Science is a solitary pursuit.

The problems associated with NOS misconceptions have been accumulating for years as science teaching and textbooks in the past focused on only science content, while teachers rarely explored how science functions. Moreover, NOS education suffered as a result of teachers not valuing NOS instruction in their classes as much as other science content areas and standards. The processes of teaching effective NOS were often ignored in classrooms entirely (Akerson; & Abd-El-Khalick. 2003; McComas. 2000; Schwartz; & Lederman. 2002).

1.5 Assessing Understanding of the Nature of Science

The first formal assessment of NOS understanding began in the early 1960s, emphasizing a quantitative approach. Until around the mid-1980s, researchers attempted to develop instruments for assessing NOS that were easy to grade and quantify to assess understanding (TABLE 2). Some open–ended questions were also used in order to validate test items, but the purpose of using open–ended questions at that time did not involve providing an expanded view of an individual's belief regarding NOS.

TABLE 2 INSTRUMENTS FOR ASSESSING UNDERSTANDING OF THE NATURE OF SCIENCE

Date	Instrument	Author(s)
1954	Science Attitude Questionnaire	Wilson
1958	Facts About Science Test (FAST)	Stice
1959	Science Attitude Scale	Allen
1961	Test on Understanding Science (TOUS)	Cooley & Klopfer
1962	Process of Science Test	BSCS
1966	Inventory of Science Attitudes, Interests,	Swan
	and Appreciations	
1966	Science Process Inventory (SPI)	Welch
1967	Wisconsin Inventory of Science Processes (WISP)	Research Center
1968	Science Support Scale	Schwirian
1968	Nature of Science Scale (NOSS)	Kimball
1969	Test on the Social Aspects of Science (TSAS)	Korth
1970	Science Attitude Inventory (SAI)	Moore & Sutman

Table 2 (Continued)

Date	Instrument	Author(s)
1974	Science Inventory (SI)	Hungerford&Walding
1975	Nature of Science Test (NOST)	Billeh & Hasan
1975	Views of Science Test (VOST)	Hillis
1976	Nature of Scientific Knowledge Scale (NSKS)	Rubba
1978	Test of Science-Related Attitudes (TOSRA)	Fraser
1980	Test of Enquiry Skills (TOES)	Fraser
1981	Conception of Scientific Theory Test (COST)	Cotham & Smith
1982	Language of Science (LOS)	Ogunniyi
1987	Views on Science-Technology-Society (VOSTS)	Aikenhead,
		Fleming & Ryan
1990	Nature of Science Survey	Lederman &
	7000	O'Malley
1992	Modified Nature of Scientific Knowledge	Meichtry
	Scale (MNSKS)	
1995	Critical Incidents	Nott & Wellington

(From: Lederman, Wade; & Bell, Assessing Understanding of the Nature of Science: A Historical Perspective. 1998: 333)

After analyzing NOS instruments that had been developed since 1958, Lederman, Wade, and Bell (1998) found that many test items were inadequate for assessing NOS. It was found that most of the questions in these instruments concentrated on assessing student ability and skill to engage in the process of science rather than focus on NOS understanding. These items emphasized the affective domain such as student attitude towards or appreciation of science and scientists rather than knowledge related to NOS. Also, a primary emphasis was often placed upon "science as an institution" with little or no emphasis placed upon the epistemological characteristics of the development of scientific knowledge.

Although some instruments have been verified as valid and widely used in large-scale research, there are still problems and concerns. Lederman (1998) critiqued the

multiple-choice and the Likert scale response format used in these instruments as forcing students to represent only the part of their view of NOS-the part that correlated with the researcher's perspective. These instrument formats also contained biased views of NOS and failed to demonstrate the actual view of NOS that students held.

In light of such concerns, open—ended questionnaires to assess student understanding of NOS were developed. This set of questionnaires—called Views of the Nature of Science Questionnaire or VNOS questionnaire—is widely used in today's science education community. The important feature of VNOS questionnaires is that the instrument is composed of open-ended questions that provide more freedom for respondents to express their own views of the scientific enterprise, while also helping to avoid the imposition of the researcher's views. Respondents also participate in a follow-up interview that provides opportunities to explore views in more depth and clear up any remaining misunderstandings (Bell; & Lederman. 2003).

The first VNOS questionnaire is called VNOS-A. It was developed by Lederman and O'Malley in order to assess high school students' perception of the tentativeness of science (Lederman; & O'Malley. 1990). It consists of 7 open-ended questions. In order to increase the reliability of the questionnaire, Lederman and O'Malley followed up the questionnaire responses with semi-structured interviews to clarify students' answers and gain a deeper understanding of the students' perception of TNOS. VNOS-A was later further modified to be used in conjunction with various groups of respondents. The results of these modifications were VNOS-B, C, D, and E (Lederman. 2007).

1.6 The nature of science in Thailand's science education

In Thailand, NOS education can be tracked back in its national curriculum to at least B.E. 2518 (A.D. 1975), when a stated science–learning goal of "understanding theories that are fundamental to science, using methods of science to solve problems, and the development of a scientific attitude" was included. We can see that the goal consisted of issues relating to today's NOS discussion. Science curricula for early secondary school B.E. 2521 (A.D. 1978), upper secondary school B.E. 2524 (A.D. 1981), and the improved curriculum B.E. 2533 (A.D. 1990) were later released. These curricula consisted of learning

objectives that were more closely related to the NOS, stating that "students will have science processing skills and understand the boundaries and limitations of science." Finally, following curriculum reform in Thailand, the national science curriculum B.E. 2544 (A.D. 2001) was re3leased. This present curriculum clearly states that science education must provide students with an understanding of the nature and limitations of science.

The formulation of science teaching/learning in schools has the following aims for the learners:

- 1. To understand the principles and theories basic to science
- 2. To understand the scope, limitations, and nature of science
- 3. To provide skills for discovery and creation in science and technology
- 4. To develop thinking processes, imagination, ability to solve problems, data management, communication skills, and ability to make decisions
- 5. To become aware of relationships between science, technology, and humans and the environment in terms of influence and impact on one another
- 6. To utilize knowledge and understanding of science and technology for the benefit of society and daily life
- 7. To foster a scientific mind, a moral and ethical sense of responsibility, and proper values so that science and technology will be used constructively

IPST, B.E. 2544

Moreover, this is the first time that the Thai science curriculum admitted NOS as one of the content sub-strands. Sub-strand 8, the nature of science and technology, clearly states its standards as follows:

The national science curriculum standards also set standards for the nature of the science and technology sub-strand. The nature of science and technology learning standards for grade 7–9 students include:

- 1. Posing questions that specify important issues and variables involved in the investigation or research subjects of interest comprehensively and reliably
- 2. Setting up hypotheses that are verifiable and planning various ways to investigate them

- 3. Choosing investigative techniques to obtain qualitative and quantitative data and using appropriate materials and instruments, which guarantee high validity and safety
 - 4. Collecting data and treating data qualitatively and quantitatively
- 5. Analyzing and evaluating correlations between evidence and conclusions, both for and against a hypothesis and the abnormalities of data arising from investigation
- 6. Making models or pattern representations that explain the results or show results from investigation
- 7. Posing new questions leading to investigation of related subjects and bringing new knowledge to bear on new situations
- 8. Recording and explaining observed results and investigations, researching additional sources to achieve reliable data, accepting changes when new data and additional evidence or opposing views prevail
- 9. Organizing presentations, writing reports, and/or explaining concepts, processes and results from projects and works done to others

It can be clearly seen that the standards strongly emphasize students' abilities to conduct scientific investigation, which relates to the epistemological dimension of TNOS concepts of this study. However, the concepts related to sociocultural context and individual scientists are not clearly stated in the standards.

1.7 Research related to the nature of science in Thailand

Limpanont (2004) studied how teachers were carrying out instruction on the Nature of Science with regard to the aforementioned science strand. The research aimed specifically to study what aspects of NOS were being addressed in lower secondary science classrooms. The researcher categorized aspects of NOS into three issues: the nature of scientific knowledge, scientific inquiry, and the scientific enterprise. Four science classrooms in four different schools were selected as research sites. After observing all classrooms for eighteen weeks and following a semi-structured interview with participant teachers, it was found that the NOS issues that were taught the most involved scientific inquiry. This inquiry was comprised of the scientific method, science processing skills, and

the scientific mind. Instruction on issues regarding the nature of scientific knowledge and scientific enterprise was rarely observed. The most common teaching method was lecturing, followed by the suggestion that other learning resources be utilized for self-study, experimentation, and additional assignments. As for the reasons that teachers addressed certain aspects of NOS in their classes and not others, the teachers responded that they taught the aspects of the scientific method, science processing skills, and the scientific mind because these issues are stipulated in science curriculum standards. However, other aspects of NOS they taught came from their intention to develop their students' ability to apply science to their own lives and the ability to be scientists. It was also observed that some teachers unintentionally addressed other aspects of NOS in their classrooms.

Meesri (2007) developed a Professional Development Program for enhancing teachers' understanding of NOS and its implementation in the classroom. The research aimed to study the effects of a professional development program on science teachers' views of the nature of science and instructional practice. The professional development program consisted of two phases: 1) developing teachers' understanding of the nature of science, and 2) developing teachers' pedagogical content knowledge for the nature of science instruction. In Phase 1, participants included fifteen secondary science teachers. In Phase 2, participants were comprised of six teachers who had participated in Phase 1. These teachers were asked to teach the nature of science in their actual classroom settings after they had further developed their understanding of the nature of science from Phase 1. Learning strategies used in this program consisted of 1) workshops, 2) model lessons, 3) teaching practice, 4) reflective writing, and 5) coaching and mentoring. The researcher tracked the changes in before and after views of the nature of science of each teacher by using 2 questionnaires: 1) a five-point Likert scale questionnaire, and 2) an open-ended questionnaire in conjunction with individual interviews. To evaluate teachers' practice, three teaching sessions were assigned to the teachers. Classroom observation, field notes, and lesson plans were collected and analyzed to find how teachers changed their pedagogical approaches to nature of science instruction and how they addressed aspects of the nature of science throughout three teaching sessions. The data indicated that prior to attending the

program teachers had some ideas about aspects of NOS, but they could not clearly explain these concepts verbally. Thus their understanding of the nature of science was generally inadequate for science teaching. They did not emphasize concepts of the nature of science as their goals of instruction and students' learning outcomes. After the teachers attended the program, they changed their views from naive/misconception-laden to informed perspectives in most of the nature of science issues. They could articulate the meaning of the nature of science in their own words and provide examples. Through three teaching sessions, the teachers also improved in their science pedagogy by explicitly addressing nature of science issues in their science classes instead of implicit or didactic teaching on the nature of science. From the teachers' self-reflection the possible sources for the improvement of their teaching on the nature of science included activities about science-related stories, reflective writing, and model lessons. The results demonstrated the important implications for teacher education as well as the successful implementation of current reforms.

Roma (2008) developed a curriculum on NOS for third grade level students. The purpose of this research was to pursue the construction and study of the consequences of a new curriculum. This research was conducted through a 4-step procedure: studying basic information, constructing a curriculum, revising and improving the curriculum, and then implementing and checking the efficiency of the curriculum. Following these steps, a nature of science curriculum and appropriate teaching tools were developed. A draft curriculum and its teaching tools were examined and approved by experts, and a pilot study was carried out for 30 periods. After implementing and checking the efficiency of the curriculum, the curriculum was tested during one semester (30 periods) for *Matthayomsuksa* 2 and *Matthayomsuksa* 3 students. Data were analyzed by using a t-test for dependent samples, a t-test for independent samples, and a one-way analysis of variance for these samples. The analyses of experimental data gave good results with regard to the understanding of the nature of science, skill in scientific processing, scientific thinking ability, and the awareness of ethics in science. Post-test scores of students were significantly higher than their pre-test scores at a significance level of 0.01. A similar result

in scores between experimental and control groups of students was obtained. Additional results were also obtained showing an improvement of higher-order thinking and communicative writing abilities.

Chamrat (2009) explored the influences of teachers' implementing the Atomic Structure Instructional Unit (ASIU) on students' conceptions of the nature of science and atomic structure. The ASIU was developed based on identifying key curriculum documents and using findings from Phase I in this research: (1) current teaching and learning of atomic structure, (2) students' understanding of the nature of science and atomic structure, and (3) teachers' understanding of the nature of science. A model-based approach was used as the framework for instructional unit design in which learners participated in model and modeling activities such as constructing, comparing, and contrasting, critiquing, and modifying models. Effects of the ASIU on students' understanding were explored through classroom observations, interviews, the Atomic Structure Concept Test (ASCT), the Nature of Science Questionnaire (NOSQ), and documentary data. The model and modeling activities encouraged students to shift from memorizing content without understanding to rational thinking to support their explanations. For example, students connected scientists' experiments to the atomic model being constructed. The reflection and discussion of the students' experiences in the lessons resulted in students' conceptualization of core aspects of the nature of science, for example, science's reliance on evidence, the role of creativity and imagination in science, and observation and inference. Furthermore, it was found that students changed from passive learners to active participants by engaging in model thinking and modeling activities. The overall findings of this study suggest that the designed instructional units based on exploration of the current frameworks in teaching and learning atomic structure and the nature of science, coupled with a model-based approach, can be used to develop an informed understanding of the nature of science. These findings also concurrently lead to an enriched understanding of the content-based concepts involving atomic structure. However, there are key points that emerged in this study that need to be addressed. The teachers' teaching of atomic structure, with the integration of the nature of science, was influenced by their background and characteristics, their commitment to

change, their understanding of the nature of science, and their dependence and familiarity with using the lecture as a "reliable" method of instruction. Thus, these factors seem to be the most important determinants in developing student understanding of the nature of science. The outcome is that successful implementation of a model—based curriculum is critically dependent upon carefully planned professional development experiences for teachers.

2. Decision making

2.1 Definitions and types of decision making

Decision making is a process of thinking critically about choices to select among alternatives on the basis of laws, principles, generalizations, and rules (Bayer. 1991; McWorher. 2006; Rath et al. 1967). McWorther (2006: 124) explained that while each of the situations involves choices, each also involves very different types of thinking. Types of decisions can be divided into 3 different varieties: routine decisions, impulsive decisions, and reasoned decisions.

Routine decisions are decisions that persons make in their everyday lives, e.g., ordering food. This kind of decision is usually a safe, habitual choice that makes a person's life run smoothly and eliminates the need to constantly make choices. Impulsive decisions are decisions that are suddenly made and not well thought out. For example, in the last minute, a student decides to cut class and take a trip to the lake. This kind of decision can cause or lead to problems. On the contrary, reasoned decisions are used in important situations. This kind of decision is the best type, in which alternatives are identified and weighed and outcomes are predicted (Mcworther. 2006).

2.2 Scope of decision making in this study

From an educational perspective, most agree that teaching children to simply recall scientific facts, laws, and theories is not enough. Teachers and science educators want students to know why scientific knowledge and ideas have merit and may be trusted. Therefore, understanding NOS is linked to the ultimate goal of scientific literacy: to improve citizens' abilities to make reasoned decisions in a world increasingly impacted by the

processes and products of science (Bell; & Lederman. 2003). Consequently, the scope of decision making being studied in this research focuses on how students relate the dimension of TNOS when making choices of whether or not they will accept a scientific claim or what actions they are going to take when dealing with science—based issues. From the researcher's perspective, the process of making choices in this form is close to socioscientific decision making.

The phrase "socioscientific issues" represents a variety of social dilemmas with conceptual, procedural, or technological associations with science. The socioscientific issue movement arises from a conceptual framework that unifies the development of moral and epistemological orientations of students and considers the role of emotions and character as key components of science education (Sadler; & Zeidler. 2005).

It has been explained that when individuals deal with socioscientific decision making, they use reason in a deliberate manner to negotiate and resolve particular issues. They also frequently rely on their feelings and emotions to work out dilemmas. This process is called informal reasoning (Sadler; & Zeidler. 2005). There are factors that influence the process of informal reasoning. According to a study that analyzed numbers of research findings, it was concluded that informal reasoning is significantly influenced by personal experiences, emotive considerations, a tendency to focus on social considerations, the primacy of morality in many socioscientific contexts, and variability in students' perceptions of the complexity inherent in these issues (Zeidler; et al. 2002).

Sadler and Zeidler (2005) studied patterns of informal reasoning in the context of socioscientific decision making by providing college students with socioscientific issues related to genetic engineering and asked them to make decisions. The results show that when participants made decisions, they showed patterns of three informal reasoning types: rationalistic, emotive, and intuitive. In some cases, participants showed only one type of informal reasoning. Meanwhile, in many cases, participants showed a combination of reasoning. Therefore, these 3 types of informal reasoning are not totally discrete.

Rationalistic informal reasoning is cognitive reasoning in which participants rely only on reason and logic to formulate and support their decision. This pattern of reasoning

includes, but is not limited to, patient rights, side effects, issues of access, technological concern, and the severity of disease conditions.

Meanwhile, intuitive informal reasoning is affective reasoning in which participants resolve scenarios based on their immediate feelings or reactions. Individuals displaying this type of thought pattern had an immediate positive or negative reaction to the scenario, and these feelings contributed to their negotiation and eventual resolution of the issue.

Finally, emotive informal reasoning is consistent with both cognition and affect. This pattern of informal reasoning involved emotions typically classified as moral emotions, namely empathy and sympathy. In these cases, participants displayed a sense of care toward the individuals who might be affected by the decisions made. Emotive reasoning differed from rationalistic reasoning in that rationalistic reasoning lacked the influence of emotions. Emotive and intuitive informal reasoning were both affective classifications but remained unique. Whereas emotive patterns were directed toward real people or fictitious characters, intuitive patterns were personal reactions in response to specific aspects of the scenario.

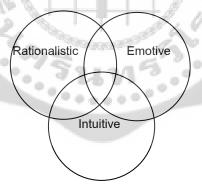


FIGURE 3 PATTERN OF INFORMAL REASONING IN SOCIOSCIENTIFIC DECISION MAKING

(From: Sadler, T. D.; and Zeidler, D. L. (2005). Patterns of Informal Reasoning in the Context of Socioscientific Decision Making. *Journal of Research in Science Teaching*. 42(1): 112–138.) According to Sadler and Zeidler's reasoning types, student decision making that will be studied in this research is most congruent with the rationalistic pattern since it focuses on decisions that an individual makes by relying on his or her conceptions of TNOS ideas.

2.3 Instruments to explore students' decision making on issues and dilemmas related to science.

In order to gain rich information of participants' decision making, it has been suggested that a qualitative method should be used rather than quantitative instruments (Bell; & Lederman. 2003; Sadler; & Zeidler. 2005; Zeidler; et al. 2002). In many cases, researchers provided participants scientific-based scenarios related to the real world and asked them to make decisions by using interviews or questionnaires. Then the responses were followed up by in–depth interviews to gain a better understanding of the respondents' answers and to clarify terms that might be misinterpreted by researchers. Later, data from questionnaires and interviews were coded and categorized to explain how participants made their decisions in those given scenarios.

One example of research that explored participants' decision making is a study of Bell and Lederman (Bell; & Lederman. 2003). From the study, the Decision Making Questionnaire (DMQ) was developed by constructing scenarios and accompanying questions for the DMQ based on a variety of print and web-based materials. The scenarios related real-world issues on a variety of science and technology topics upon which a citizen might be expected to vote or make personal decisions. A panel of experts consisting of four science educators and two research scientists reviewed and offered suggestions to improve the face and content validity of this questionnaire. The DMQ's scenarios and items were modified according to the panel's suggestions for improvement. The final version of this questionnaire contained four different scenarios concerning science and technology issues, including (a) fetal tissue implantation, (b) global warming, (c) the relationship between diet and cancer, and (d) the relationship between cigarette smoking and cancer. Each scenario was followed by three to five questions designed to elicit both "yes" or "no" decisions and to encourage respondents to explicate the factors and reasoning patterns influencing their

decisions. Following this questionnaire, the participants were interviewed to provide opportunities for them to clarify and elaborate on their responses to the DMQ. All interviews were recorded to construct summary profiles of the participants' decisions and reasoning patterns.

Below is an example of scenarios and questions used in DMQ

Scenario I

In the past decade, research has opened the doors to fetal tissue transplantation, a procedure that typically involves transferring tissue from an aborted fetus to another human. The procedure could potentially provide therapy for victims of a variety of debilitating diseases, including diabetes, Parkinson's disease, and Alzheimer's disease. As in many areas of biotechnology, the development of this technique has outpaced the development of ethical policy. Please read the following scenario and thoughtfully answer the questions that follow.

enjoy a comfortable lifestyle and a stable home life with their two teenage children. Recently, Sally's elderly father was diagnosed as having Parkinson's disease, a slowly progressive disabling ailment marked by tremor and increasing muscular stiffness. His symptoms are mild but his physician has explained that he will become more and more incapacitated with time. Close to the time that she learns about her father, Sally reads an article in the local newspaper about a research project being run at a local university. A team of researchers, led by Dr. Harrison, have applied to the federal and state governments for permission to do a study with Parkinson's victims. She visits Dr. Harrison to learn more about the disease. During the course of their discussions, she finds out that the progression of Parkinson's can be slowed and possibly reversed by implanting fetal brain cells in the brain of the patient. Two months later Sally is surprised to learn that she has become pregnant. Because of the

unexpected nature of the pregnancy, Sally considers aborting the fetus. Furthermore, as her father's condition begins to deteriorate, she and Bill consider some therapeutic options for him. Recalling her discussions with Dr. Harrison, Sally and Bill begin to discuss the option of using tissue from the fetus in her womb to donate the cells to cure her father.

Questions

- 1) Given the experimental nature of fetal tissue transplant treatments are Sally and Bill justified in considering the procedure for her father? Why or why not?
- 2) If Bill and Sally decide to abort the fetus, should they be allowed to donate the fetal tissue for transplantation? Why or why not?
- 3) Should Bill and Sally be allowed to designate Sally's father as recipient of the fetal tissue? Why or why not?
- 4) Should Sally be allowed to have the abortion if her primary reason for wanting it is to provide a source of tissue for transplantation into her father? Why or why not?
- 5) Should Dr. Harrison be allowed to continue his work on fetal brain tissue transplantation as a treatment for Parkinson's disease? Why or why not?

(from: Bell, R. L.; and Lederman, N. G. (2003). Understandings of the Nature of Science and Decision Making on Science and Technology Based Issues. *Science Education*. 87(3): 352-377.)

A study that is similar to Bell and Lederman's was conducted by Sadler and Zeidler (2005). According to their study, a qualitative approach was used to examine patterns of informal reasoning and the role of morality in these processes. Thirty college students participated individually in two semi–structured interviews designed to explore their informal reasoning in response to six genetic engineering scenarios. The first interview

introduced the scenario and questions that respondents needed to answer. The second interview was to clarify their answer from the first interview. Data from the interviews were then coded and searched for patterns.

3. Curriculum Development

In this section, the definitions of curriculum, model of curriculum development, and the integrated nature of science curriculum are reviewed and presented.

3.1 Definitions of curriculum

The term "curriculum" can be conceived of from narrow to broadened views. Some may conceive of curriculum as a vein of a subject or a course of study. Meanwhile, others may conceive of curriculum as the experiences that learners have both in school and out. In order to demonstrate definitions of curriculum, Ornstein and Hunkins (1993) summarized 5 different definitions of curriculum that have been used by well–known educators. These definitions are described as follows:

- 1) A plan for action or a written document that includes strategies for achieving desired goals or ends. This definition represents the linear view of curriculum. The steps of curriculum development are planned in advance and progress from the beginning to the end. This curriculum view was popularized by Ralph Tyler (1969) and Hilda Taba (citing Oliva. 2009).
- 2) The experiences of the learner. The second definition of curriculum is broader than the first one. The experiences of learners in this definition include almost anything in school, even outside of school (as long as it is planned) as part of the curriculum. This view is rooted in Dewey's definition of the experience and education, as well as in Caswell and Campbell's view from the 1930s.
- 3) Systems for dealing with people and the processes or the organization of personnel and procedures for implementing the systems
 - 4) A field of study
 - 5) Subject matters

From this point, the term curriculum is flexible and can be used in different contexts. However, sometimes curriculum is misused and incorrectly fused with the term "instruction." In order to distinguish between instruction and curriculum, Posner and Rudnitsky (2006) explained that instruction is a process but curriculum is not. Curriculum represents what is taught in school or what is intended to be learned. Therefore, curriculum development results in a design specifying the desired (intended) learning outcomes. On the other hand, instructional planning results in a plan outlining the intended process of instruction. In other words, curriculum indicates what is to be learned, and the instructional plan indicates how to facilitate learning.

3.2 Model of curriculum development

This research study aimed to develop an integrated NOS curriculum and instructional plans that would be practicable for teachers to use in their science classrooms. Therefore, the model of curriculum development suggested by Posner and Rudnisky (Posner; & Rudnisky. 2006) was chosen to develop the curriculum.

Posner and Rudnisky view the process of curriculum development as being for a specific classroom, instruction that they call "course design." They proposed that a model for curriculum development be a step-by-step process that teachers can follow in order to plan an effective course. They advise curriculum developers to modify the process to suit their own circumstances instead of expecting a single approach to work always and with everyone (Posner; & Rudnisky. 2006).

Posner and Rudnisky's model for curriculum development is presented as follows:

1) Getting oriented

At the first step of curriculum development, Posner and Rudnisky suggest that a curriculum developer write a brief paragraph of the course and jot down all the ideas he has for his course. This step is helpful in getting an overview of the course design.

2) Setting a direction

The process of setting a curriculum direction is to develop a tentative curriculum outline by connecting the initial ideas together. At this step, initial intended

learning outcomes (ILOs) will be identified and categorized under specific headings: skills and understandings. Diagrams and conceptual maps are suggested to be used as tools to help illustrate the interrelationships among ideas.

3) Developing a course rationale

After setting the direction of the course, the curriculum developer writes a rationale for the course on the basis of initial ideas and thoughts about the course's focus. The rationale should clearly state the course's educational goals within the framework of the learner, the society, and the subject matter.

4) Refining intended learning outcomes

At this step, ILOs will be reviewed and placed into four categories: cognitions, cognitive skills, affects, and psychomotor-perceptual skills. By categorizing ILOs developers are making an important decision regarding the kind of learning they want their ILO statements to communicate. ILOs are prioritized based on the reexamination of the course rationale. ILOs are examined as a whole, looking for an overall balance. This requires eliminating redundancies and filling in gaps. ILOs that are considered trivial must be eliminated. The rationale is checked for consistency and necessary revisions are made.

5) Forming units of the course

The curriculum developer forms units out of the curriculum by clustering the ILOs into coherent units and designing instructional foci. There is no precise requirement for the size of a unit. A unit should be a coherent whole—that is, the learning points composing the unit should make some sense when taken together. Upon completion of a unit, the student should know or be able to do something that relates to other content

6) Organizing the course units

Organized units are units in the order in which they will be presented to students. This organization is expressed in the form of a unit outline. There are three levels of unit organization: 1) the grouping of units that consists of clustering units together in a meaningful fashion, 2) the sequencing of groups that consists of ordering the grouped units in the way they will be taught, and 3) the sequencing of units within groups (ordering the units within a group in the way they will be taught).

7) Developing general teaching strategies

At this step, the curriculum developer elaborates instructional foci into general teaching strategies for course units. Instruction is made up of all the teacher's purposeful activities aimed at producing, stimulating, or facilitating learning by students. The curriculum developer can begin this step from writing a description of teaching strategies based on the ILOs of the course. Then, a brief description, introduction, and rationale for each unit is written. Lastly, the total instructional plan should be reconsidered in light of the curriculum rationale and checked for internal consistency and comprehensiveness.

8) Planning a course evaluation

The step of course evaluation is aimed at gathering and analyzing information that will be used for course–improvement decisions. That is, a formative evaluation is emphasized. This emphasis was not chosen because summative decisions are unimportant. But if the course is irremediably bad, this fact should become evident during the formative evaluation. The step begins with identifying evidence of the main effects of each category of ILOs: cognitions, affects, cognitive skills, and psychomotor-perceptual skills. Next, a set of authentic assessment techniques for gathering evidence of what students can do with the knowledge in the real world is designed. Finally, the course's planned interactions between learners and (a) teacher, (b) the instructional foci, (c) the organization of course units, and (d) the institutional setting of the course are examined. Unintended and undesirable learning should be listed under the heading "possible side effects."

3.3 Integrated nature of science curriculum

Johnston and Southerland (2002) suggest that NOS concepts are best understood in the context of science content. Many concepts of the NOS might have some logical coherence on their own, but they really do not mean anything if they are not applied to science content itself. Consequently, NOS concepts should be taught while integrated into science content. This suggestion is related that of Brickhouse and others (Brickhouse; et al. 2000) who studied students' views of theories and evidence. They found that students had more difficulty talking and writing about theories and evidence in general than

they did about specific theories with which they were familiar. Questions regarding theories, without reference to any theory in particular, tended to elicit vague responses. This finding suggested to them that studying students' views about the nature of science is best done in a context where it is possible to talk about particular theories or particular pieces of evidence. Knowledge of subject matter seems to influence students' ability to talk meaningfully about theories and evidence.

In order to integrate NOS aspects into an existing science courses or lessons, University of California Museum of Paleontology (UCMP. 2009) illustrate an epistemological view of science by using a flowchart to explain where scientific knowledge came from and how science works. Teachers are encouraged to use the flowchart, which is called a science flowchart, by integrating it into their existing science lesson. To do so, teachers are advised to read through their lesson, make notes on the areas in which NOS aspects or ideas about the process of science are already included, and consider the following questions:

- 1) Can existing connections to the process of science be made more explicit?
- 2) Are there ways to apply the science flowchart to emphasize the nature and process of science? (The flowchart can serve as a guide to show which aspects of science students are engaged in. Remember that all components need not be included in every lesson.
- 3) Does the lesson provide an opportunity to clarify misconceptions that students might have about science?
- 4) Are students given the opportunity to pose and modify hypotheses, look at multiple lines of evidence, and experience the logic of the scientific argument?
- 5) Are students encouraged to ask questions? Do they have opportunities to explain how they might design an investigation that might answer their questions?
 - 6) Are students encouraged to work collaboratively?
- 7) Does the lesson provide an opportunity for students to reflect on how they are doing science or on how science operates more broadly?
 - 8) Are there natural places to incorporate a story from the history of science?

- 9) Does the lesson provide an opportunity to discuss the evidence that supports or refutes a particular idea?
- 10) Is there an interesting, relevant application of the scientific idea that could be brought into the lesson?

3.4 Curriculum Evaluation

The idea of curriculum evaluation varies depending on definitions of the curriculum. As for the definitions of curriculum that refer to a written document such as content outline, scope and sequence, or syllabus, then "curriculum evaluation" might mean a judgment regarding the value or worth of such a document. For evaluation of a course level curriculum, the evaluation focuses on evaluation or assessment that serves to improve curriculum and instruction. This process involves gathering information that will be useful in deciding which curricular and instructional aspects of a course can and should be improved (Posner. 2004; Posner; & Rudnisky. 2006). This research focuses on two methods of curriculum evaluation.

3.4.1 Evaluation by experts

For this method of evaluation, a curriculum project director might assemble a panel of experts to examine draft materials for accuracy of the facts, the biases of the writers, and the comprehensiveness of the coverage. The project director would use this information as a basis for suggesting to the project staff revisions of the materials

In order to evaluate a curriculum that defined as above, Posner (2004) suggests the following examples of questions to use for the evaluation:

- 1) Is the document complete, internally consistent, and well written?
- 2) Does the document represent a curriculum that has sufficient depth and breadth and is well organized, rigorous, and up to date?
 - 3) How can it be improved?

3.4.2 Evaluation of educational results

This evaluation method emphasizes the possible range of course outcomes by identifying the important course consequences. ILOs are used to guide the

collection of evidence that will determine whether or not intended learning outcomes are actually achieved. In this type of evaluation, evidence of educational results must be collected to indicate the effects that a course has had. The methods of collecting educational results can be both traditional assessment methods that refer to types of tests, for example, short answer and multiple-choice tests, and the authentic assessment method, which involves providing students with everyday tasks for which they can actually use their knowledge to accomplish.

4. Instructional approaches for NOS teaching

In order to implement the integrated nature of science curriculum effectively, effective instructional approaches suggested by science educators for NOS teaching were reviewed. The three effective instructional approaches chosen for this research were 1) the historical-based approach, and 2) the explicit-reflective approach.

4.1 Historical-based approach

As stated above, introducing the history of science is one of the most helpful ways to teach NOS explicitly. The historical-based approach is another instructional approach that plays a major role in the instructional plan of an integrated nature of science curriculum. Science educators suggest the use of history in NOS teaching because history can help demonstrate through the lives and methods of scientists the development of scientific knowledge, and the relationships between science disciplines will make NOS instruction more meaningful for students. However, it should be noted that merely teaching the history of science will not enhance students' view of NOS. Rather, explicitly addressing certain aspects of NOS together with historical cases is more effective in enhancing students' NOS perspective. The benefits of a historical-based approach and the types of historical-based approaches are presented below:

4.1.1 Benefits of a historical-based approach

When using a historical-based approach to teach NOS, teachers must realize that history exemplifies the fact that science is an ongoing and changing enterprise. Teachers may follow particular standards for teaching the history and nature of science, for example, the United States' National Science Education Standards, which recommend the

use of history in school science programs to clarify different aspects of scientific inquiry, the human aspects of science, and the role that science has played in the development of various cultures.

Mathews (Matthews. 1994 citing Lonsbury; & Ennis. 2002) described the benefits of using history to teach NOS as follows:

- 1) History promotes better comprehension of scientific concepts and methods.
- 2) Historical approaches connect the development of individual thinking to the development of scientific ideas.
- 3) The history of science is intrinsically worthwhile. Important episodes in the history of science and culture—the Scientific Revolution, Darwinism, the discovery of penicillin and so on–should be familiar to all students.
 - 4) History is necessary to understand the nature of science.
- 5) History counteracts the scientism and dogmatism that are commonly found in science texts and classes.
- 6) History, by examining the life and times of individual scientists, humanizes the subject matter of science, making it less abstract and more engaging.
- 7) History allows connections to be made within topics and disciplines of science, as well as with other academic disciplines; history displays the integrated and interdependent nature of human achievements.

4.1.2 Types of historical-based approaches

Historical-based approaches can be used in many ways. Teachers may adjust the uses of history either long term, by connecting many lessons to a case study, or take a short period of time to introduce a short story from history—a historical vignette—in one lesson. Examples of these two different ways to use historical—based approaches are presented as follows:

1) Using a case study

Howe (2007) used a historical case study of sickle-cell anemia to teach concepts in genetics and to help students connect to multiple NOS tenets, namely,

that 1) knowledge production in science shares common methods, 2) scientific knowledge is tentative, durable, and self correcting, 3) science has a subjective component (theory-laden character), 4) there are historical, cultural, and social influences on the practice of science, and 4) science and its methods cannot answer all questions.

With the case of sickle cell anemia, Howe developed an eight-lesson unit in which he presented a "mystery disease" that students were to solve by examining evidence taken from the history of research by past scientists who were working to understand a particular phenomenon. In both small—group and whole—class formats, students were challenged to consider the evidence they were given and to develop explanations to account for various problems they encountered. In later classes, students were provided with more and more evidence, according to sickle—cell history. Explanations students developed in earlier classes were often called into question in later class as new data became available, which is a process similar to of past scientists. Teachers facilitated student learning by asking questions to help students consider conceptions of NOS. Howe's guiding questions to connect history of science and NOS are presented in TABLE 3.

TABLE 3 NOS TENETS AND GUIDING QUESTIONS

NOS Tenet	Guiding Questions
Knowledge production in	How did the scientists draw from larger generalizations (laws and/or
science shares similar	theories) to inform their empirical work?
methods	How did their individual data collection lead toward developing their own
	generalizations?
Scientific knowledge is	Did the scientists' explanation(s) replace or supplant any existing ones?
tentative, durable and	Were there alternative theories to account for the available data?
self- correcting	Were any explanations (or methods used to derive them) found to be in
	error?
	What caused the replacement of one theory with another? New data? A
	new perspective on existing data?
	Did technology play a role in bringing about new data?
Science has a creative	How did scientists achieve their insights?
element	Did they draw from other experiences (non-scientific) or creative
	endeavors?

Using such questions in the classroom to tease out the NOS aspects raised by a historical case in this way helps students explicitly and reflectively develops their NOS conceptions. The NOS core tenet should be used as a guide to investigate any history of science episode that may be relevant for illuminating the conceptual material teachers plan to cover in class. This approach integrates NOS instruction more frequently (and substantively) into a curriculum where the history of science is used (Howe. 2007).

2) Using historical vignettes

Another example of using historical stories to teach NOS explicitly by integrating it into science content is the use of historical. Wandersee and Roach (1998) suggested a step-by-step procedure to plan historical-based instruction called interactive historical vignettes (IHV). In this approach, NOS aspects are explicitly addressed through short stories in the history of science that are related to particular science content. In subsequent class periods, students reflect on their understanding of NOS and history through docudrama. IHV is most effective when used in an existing science course. This approach starts by 1) choosing a scientist of personal interest to the vignette's author and audience; 2) gaining multiple historical perspectives on the chosen scientist; 3) selecting a pivotal incident in the life of that scientist that has potential for teaching an aspect of NOS (or of a particular science); 4) writing the IHV in a standard format in a docudrama style; 5) letting students make a personal intellectual investment in the vignette by predicting how the story will end; and 6) telling the rest of the story and discussing how particular NOS aspects emerge during guided discussion of how the IHV relates to contemporary science. The process diagram explaining how to teach NOS using IHV is shown in FIGURE 4.

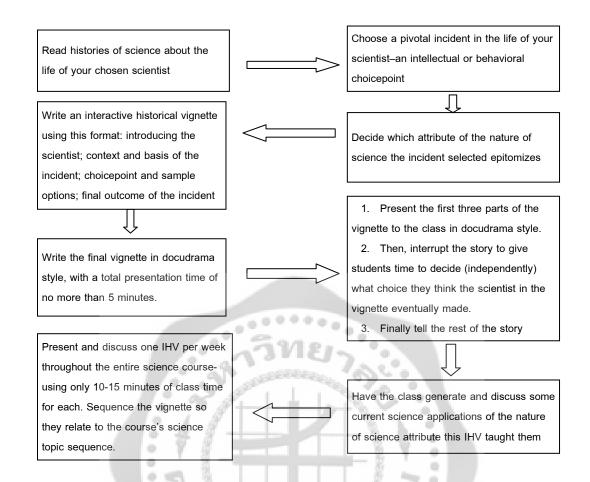


FIGURE 4 PROCEDURE FOR PLANNING NOS INSTRUCTION USING HISTORICAL VIGNETTES

(From: Wandersee, J. H.; & Roach, L. M. (1998). Interactive Historical Vignettes. In Teaching Science for Understanding a Human Constructivist View. Edited by Mintzes, J. J.; Wandersee, J. H.; & Novak, J. D. San Diego: Academic Press.)

4.2 Explicit-reflective approach

NOS by themselves in common science instruction, NOS must be addressed explicitly in order to enhance students' understanding of its aspects. The term "explicit" is used here to emphasize that teaching about NOS should be treated in a manner similar to teaching about any other cognitive learning outcome (Schwartz; & Lederman. 2002). Thus science curriculum and instruction should clearly state specific NOS objectives and create instructional activities in order to reach the target. Furthermore, the curriculum and instruction allow students to reflect on their view of NOS and thus help them gain a deeper

understanding of NOS. The process of reflection can be carried out through questioning and discussion. The approach of addressing NOS explicitly and allowing students to reflect on their views of NOS is called the explicit–reflective approach, which is believed to be the most effective approach to teach NOS (Akerson; et al. 2000; Lederman. 1992, Schwartz; & Lederman. 2001).

In order to make NOS instruction explicit, key concepts regarding the nature and process of science should be explicitly and independently emphasized. Engaging in inquiry and studying the history of science are most helpful when the nature of science concepts they exemplify are explicitly drawn out in discussion and interactions. The key concepts about the nature and process of science should be revisited in multiple contexts throughout the school year, allowing students to see how they apply to real–world situations. The process of reflection can be done by encouraging students to examine, test, and revise their ideas about what science is and how it works (UCMP. 2009).

5. Learning activities and strategies

Portraying messages about the nature of science and teaching about it directly are challenging tasks for teachers. Particular strategies for teaching NOS were chosen for the instructional plan of the integrated nature of science curriculum. These activities and strategies are: 1) group discussion, 2) structured reading or listening or watching to items which involve stories of science, 3) role playing, and 4) handling controversial issues. They are explained below.

5.1 Group discussion

Discussion is very important in teaching about NOS. Teachers may use controversial issues in science, for example, human cloning, as a discussion topic to help students think about conflicts between science and society. In another way, teachers may present students with scientific theories that need more evidence and explanation to help students learn that scientific theories are tentative and in some cases we cannot be certain which theory is best at explaining a phenomenon, for example, the extinction of dinosaurs (Wellington. 2000; Windale. 2004).

True discussion involves the sharing of ideas, thoughts, and feelings. During most classroom discussion, it is expected that students will participate equally, and depending on the type of discussion, the teacher may play an equal role, adopt a leadership role, or choose not to participate at all. When planning classroom activities that involve discussion, teachers should take into account matters such as these (Lemlech. 1998).

1) The purpose of discussion

A classroom discussion should have a purpose. Students are assembled in a group to talk in a meaningful way. This underlying purpose differentiates the classroom discussion from an idle conversation. A discussion usually begins with a get–acquainted—with–the topic stage; it then generally proceeds to a problem–definition stage, in which the participants focus on a specific purpose.

2) Classroom environment

The classroom environment affects the success of the discussion. Students should be able to see each other easily so that they know when someone is about to speak. If students cannot see each other, they may not focus on the discussion or become involved. In small groups, the teacher's role is to support and facilitate. The teacher walks among groups, observing and providing assistance when needed. In large groups, the teacher's roles may vary, depending on the purpose of discussion and on the teacher's personality and teaching style. A classroom climate that is highly structured may suit a teacher who demands rigid control. However, this manner of discussion tends limit the discussion to only a few students. In contrast, if the teacher creates an open, warm, encouraging climate for discussion, the interaction pattern would allow the flow of ideas among the students, and the students will learn to listen to classmates and take turns.

3) Participant roles in discussion

In discussion, participants should keep their role in mind in order to keep the discussion group on target. Desired behaviors regarding discussion roles are only learned by practicing, and they can be learned at any grade level. The roles of discussion participants can be divided into three types:

3.1) Leadership role

The leadership role can be assumed by either teacher or students. Typically in a small discussion group, a student is designed as the leader. Ultimately, all students should learn to assume the leadership role. The discussion leader a) accepts all responses by assuming a nonjudgmental attitude, b) encourages spontaneity by not injecting personal statements or evaluative responses, c) solicits feelings and values responses through questioning and asking for clarification, and d) extends thinking through summative statements.

3.2) Participatory role

This role is usually assumed by most students. The participatory role includes a) showing sensitivity to other's viewpoints, b) listening to others and asking questions of others, and c) assuming responsibility for contributing ideas, thoughts, and feelings.

3.3) Recorder's role

This role is important in most discussions. It is important that the recorder note the trends on the discussion and the decisions that are made. The recorder may assist the group leader by recounting the points that have been made.

4) Teaching task and behaviors

There are two important basic ideas that the teacher should keep in mind when using discussion. The first is that students need to learn how to discuss, which means that there are skills they need to master in order to discuss well. The second point is that there is a purpose related to academic content to be accomplished through use of the discussion. Thus, at the end of discussion, the evaluation should focus on both the discussion process and on the substantive nature of the subject for discussion.

5.2 Structured reading or listening or watching material that involve stories of science

Wellington (2000) explains that media such as photographs, illustrations, and projected slides can all be used as alternatives to written material for generating discussion

and presenting evidence in science. Photographs, newspaper cartoons, or topic pictures can be used to start a discussion and initiate or investigate written work.

To start discussion by using these materials, teachers can:

- 1) Invite general comments from anyone in the group
- 2) Focus on particular aspects of a picture, e.g., people's expressions, the likely time period of the photograph, size, and scale
- 3) Ask for impressions or associations conjured up by the picture (rather like brain storming)
- 4) Invite speculation on why the picture was made, what point it is trying to make, or why was a particular cartoon drawn
- 5) Invite discussion on what individuals might be saying or thinking

 Similar ploys can be used to promote written work. Students can be asked to write down three words or ideas that spring to mind when they see a picture.

 Alternatively, students can write down what the characters in a picture might be saying, perhaps incorporating this into a comic strip. The suggested captions can be compared and discussed. These, and other ploys, are all valuable starting points for using pictorial material to stimulate discussion and written work.

5.3 Role-playing

Role-playing is a good way to illustrate historical stories, for example, the discoveries of scientific ideas. Students can study and evaluate the process that scientists went through in their work as well as learn how social values affected science (Wellington. 2000; Windale. 2004). Moreover, students can learn to make decisions that involve diverse interests and values, alternative actions, and can explore consequences through playing various roles (Lemlech. 1998).

To use role-playing activities, teachers might do any of the following:

1) Motivate students by presenting the class with a problem. The teacher may read the problem or explain it to the class, or the student may see a film or listen to a tape recording of a problem situation.

- 2) Select players by choosing students who are involved in the problem or the behaviors of the characters.
- 3) Set the stage by working together as a group in order to decide how to begin the role-play.
- 4) Prepare the audience. The teacher needs to remind the rest of class to listen while the role players are settling down and suggest purposeful things for observation and listening.
- 5) Allow certain latitude during the enactment. Students' performance will not be perfect, nor should it be. The presentation should be as spontaneous and natural as possible.
- 6) Discuss and evaluate. The evaluation should focus on the authenticity of a character, not theatrics or dramatics. The discussion should focus on consequences of the solution, or the consequence of certain behavior.
- 7) Allow a reenactment, in which the same players perform again with a new solution.
 - 8) Conduct further discussion and evaluation after the reenactment.
- 9) Generalize/summarize the point to be made. When the enactment is concluded, the discussion should help students gain insight into similar problems and solutions.

To lead the role–play, teachers might take advantage of the following teaching hints (Lemlech. 1998):

- Limit your own expectations. Do not expect that students' first role-playing session will be a model situation. Accept that students' involvement may be characterized by a noisier session than anticipated.
 - 2) Expect students to be self-conscious during their first sessions.
- 3) Encourage students to focus on problems, characterizations, feelings, and solutions, not on silly or self-conscious behavior.
 - 4) Evaluate the realism of the enactment, not the ability of the students.

- 5) Stop the enactment as soon as you are aware that students have expressed what they feel, know, or want to express. Initial enactments may be fewer than five minutes long.
- 6) Discuss after the enactment. Expect these discussions to be longer than the enactment. Extend thinking through the discussion.
- 7) Encourage more students to participate in role playing rather than using the same actors.
- 8) Ensure that additional enactments are action-oriented and that they explore feelings, issues, and consequences in great depth.
- 9) Remember that students will not always get to the generalizations stage. This takes practice for both you and the students.

5.4 Handling controversial issues

Another activity that is useful for demonstrating NOS ideas and promoting decision making in science—related dilemmas is to make students come to grips with issues that are tentative or controversial. Such issues are characterized by considerable scientific debate or disagreement about their causes, theories, and evidence, (e.g., as in the case of cold fusion, GM food) and/or by debate and disagreement about the application of science and its effect on the environment, on people or on animals (e.g., the use of nuclear energy and nuclear weapons, animal experimentation, the cloning of animals or humans, or the spread of GM foods) (Wellington. 2000). These issues are a way of portraying science as an activity which is not always exact, clear, certain, and unproblematic. Also, students can learn to weigh up evidence, to search for more information, to detect bias, and to question the validity of sources.

The teacher's role is to present a balanced view of the issue by adopting one or more of the following roles (Wellington. 2000):

- 1) Devil's advocate: Confronting individuals or groups by adopting the opposite viewpoint;
- 2) The neutral chair: ensuring that all views and values are given an "equal airing," while not disclosing his or her own values;

3) The advocate role: presenting all of the available viewpoints as objectively as possible, then concluding by stating his/her position.

According to Wellington, controversial issues can be used in the science classroom and associated with the other classroom activities presented above. For example, teachers may provide a controversial issue through media that students can read, listen to, or watch in order to initiate a discussion topic, or teachers can use role playing or drama to illustrate stories of science that have become controversial.

In summary, effective instructional approaches to be used in the integrated nature of science curriculum aim to integrate and explicitly address ideas related to TNOS by treating them as important as conventional science concepts as well as allowing students to reflect on their views during instruction. The explicit—reflective approach combined with the use of the history of science is a powerful way to integrate TNOS ideas into existing science content.

ø

CHAPTER 3

RESEARCH METHODS AND PROCEDURES

This chapter describes the details of methodology used for conducting the research. It consists of the following three phases:

Phase 1: Development and evaluation of the draft curriculum

Phase 2: Data collection and curriculum implementation

Phase 3: Analysis of effects of the curriculum on students' learning

Phase 1: Development and evaluation of the draft curriculum

1. Description of the integrated nature of science curriculum

The purpose of focusing on the integrated nature of science curriculum in this research was to enhance the effectiveness of recent basic science courses in terms of integrating knowledge of NOS with traditional science content. Therefore, this curriculum was developed by cooperating with science teachers in the participating schools to make sure that it maintains traditional science content that students are expected to learn while incorporating NOS as a basis for helping students make informed decisions regarding science. In this study, the tentative nature of science (TNOS) is the specific aspect of NOS to be integrated with genetics content in the basic science course. TNOS was used to demonstrate the process of integration and for exploring the results of integrating of NOS ideas into the current basic science course.

A major assumption of the integrated nature of science curriculum is that science is an excellent endeavor to explain the natural world and construct new knowledge. However, it should be noticed that science is subject to change and revision. The tentativeness of science is caused by the epistemology of science, sociocultural context, and individual scientists. It is important for students to acknowledge the tentative character of science when deciding whether a scientific claim is trustworthy or when deciding what

decisions they should make when confronting science-based issues. The curriculum is composed of the following 6 components:

- 1. The rationale for the curriculum
- 2. The objectives of the curriculum
- 3. The content of the curriculum
- 4. Learning standards and learning indicators
- 5. Instructional plans
- 6. The assessment plan

The process of curriculum development is presented in part 2 of this section.

2. Development of the integrated nature of science curriculum draft

The process of curriculum development consists of two parts: 1) examining models of curriculum development, and 2) developing the integrated nature of science curriculum

2.1 Examining models of curriculum development

The researcher reviewed textbooks and research papers related to curriculum approaches, models of curriculum development, and curriculum and instructional design. After examining many models of curriculum development, the researcher developed an integrated nature of science curriculum by modifying Posner and Rudnisky's model of curriculum development. The reason for this is that Posner and Rudnisky's model is a model for designing curriculum for particular subjects at school level and so is suitable for designing NOS curriculum in this study. Also, Posner and Rudnisky's model is based on current well regarded research on teaching and learning, cognition, and conceptual change. However, this model is not specifically designed for teaching NOS. Therefore, it was necessary to modify the model to make it suitable for addressing and bringing together ideas of NOS and science content. Also, the integrated nature of science curriculum is not being developed for the limited use in one school only. Thus the process of gathering basic information and identifying needs for curriculum development in general was integrated into the development of the nature of science curriculum.

2.2 Developing the integrated nature of science curriculum

The process of developing the integrated nature of science curriculum was based on Posner and Rudnisky's model of course design, which is a model for developing a curriculum for a particular subject area at school level. However, the process of developing the integrated nature of science curriculum is unique in the way it integrates two sets of ideas: TNOS and genetics. Therefore, development of the integrated nature of science curriculum requires the curriculum developer to adjust some steps in order to meet the requirements of both sets of ideas. This adjustment resulted in the following 7 steps of curriculum development: 1) gathering basic information and initial ideas, 2) setting a curriculum direction, 3) developing the curriculum rationale, 4) refining intended learning outcomes, 5) forming and organizing units of the curriculum, 6) developing general teaching strategies, and 7) planning the curriculum evaluation.

1) Gathering basic information and developing initial ideas

The purposes of this step are to identify the specific needs of the integrated nature of science curriculum development and to initiate ideas regarding the direction for the integrated nature of science curriculum. The gathered information consists of three major topics, namely, the problems and needs in curriculum development, initial ideas related to NOS, and initial ideas related to genetics.

1.1) Problems and needs of curriculum development

Problems and needs of the integrated nature of science curriculum development were studied by reviewing research journals, articles, science education handbooks, standards for science teaching documents, and science curriculum documents at both international and national levels. The researcher focused on the values and goals of science education, especially the rationale for improving NOS understanding, as well as the status and problems of NOS teaching and learning. The gap between what the expected outcomes of science education and actual results of NOS teaching was identified and used as the fundamental idea for developing a curriculum on NOS.

1.2) Initial ideas related to NOS

Although various aspects of NOS were suggested to be taught in school, this study acknowledges that it is not possible to teach all aspects of NOS effectively to 12–13–year–old students in only one science course. Therefore, the extensive list of aspects of NOS had to be narrowed down. Another concern was that the concept of NOS is broad and abstract. Although many documents and papers describe and explain what NOS is, none of the descriptions look alike. Considering this problem of definition, the researcher set the scope of NOS by the following these steps:

1.2.1) The researcher reviewed textbooks, articles, and research papers in the philosophy of science, the history of science, and science education in order to gain the clearest view of NOS. Descriptions related to NOS ideas addressed in each paper were noted separately.

1.2.2) The researcher re-read all the descriptions of NOS aspects from the notes taken in the above step in order to compare the congruence between papers. It was found that although aspects of NOS were not described and explained in the same style, for the most part the overall meaning of NOS across documents were congruent.

1.2.3) Ideas of NOS presented in the literature were categorized according to particular aspects. The categories used for classifying NOS ideas were based on McComas's (1998) "Consensus Views of NOS Objectives Extracted from Eight International Science Standards Documents" since this is the paper that presents the most complete ideas of NOS. Further descriptions of NOS concepts acquired from other resources of literature review that were in consistent to McComas's were added into the resultant categories. However, some minor ideas related to NOS that did not fit the categories were marked separately for further consideration.

1.2.4) The researcher re-read the minor ideas of NOS that were left out of the categories. It was noticed that these ideas had not been widely used in recent research related to NOS at the international level. The examples of these ideas are: types of scientific knowledge, types of science disciplines, parsimony of science, amorality of

science, and science process skills. Moreover, some ideas, such as the scientific method, were claimed by recent research papers and articles to be misconceptions of NOS. Consequently, these minor ideas were eliminated from the list of NOS aspects.

1.2.5) The list of NOS aspects was presented to an expert in NOS teaching, who commented that the ideas presented in the list of NOS aspects were too extensive to be presented to middle school students in only one science course and that the scope of NOS presented in the curriculum should be more specific and not too complex for the target students.

1.2.6) The researcher narrowed down the scope of NOS ideas by considering the intention of teaching NOS, namely, to help students make wise decisions about NOS-related issues. Finally, the tentativeness of science was chosen to be the major aspect of NOS to explore the nature and limitations of science that students need to take into account when making science–related decisions.

1.2.7) The researcher had a discussion with two experts in NOS. One was the same expert from step five. The other was a university professor in the history of science. Both experts participate in training science teachers to teach NOS as well as conducting research related to NOS teaching. The purpose of the meeting was to discuss about appropriateness of setting the tentative nature of science as a major focus of the curriculum and to solicit more suggestions about teaching NOS to middle school students. The result from this discussion was that the tentative nature of science is appropriate to be set as the scope of curriculum development. It was noted that what should be focused on is that although scientific knowledge is largely trustworthy, it is subject to change for a number of reasons. Students should come to realize that certain factors influence the interpretation in science and that these factors need to be taken into account when deciding which interpretations should be believed.

1.2.8) After the discussion, the researcher re-organized the NOS framework and set the tentative nature of science as a theme for the curriculum. Features of NOS that relate to tentativeness were listed and described by focusing on the reasons for this tentativeness.

1.3) Initial ideas related to genetics

The unit on genetics in early middle was selected for demonstrating how NOS ideas are integrated into traditional science content. The researcher identified initial ideas related to genetics by studying science curriculum materials and conducting informal interviews with science teachers to gain information about how they teach science in lower secondary school classrooms and what they focus on in their teaching, particularly in the genetics unit. Teachers' lesson plans were collected. Genetics content and learning objectives from the plans were used to set a curriculum direction in terms of what concepts in genetics that teachers would focus on.

2) Setting a curriculum direction

In order to set the direction for the curriculum outline, the researcher worked through the following steps:

2.1) Refining and connecting ideas of NOS listed from step 1

Because ideas related to NOS contain many features and aspects, a few specific aspects of NOS to be presented in the curriculum need to be selected. The researcher narrowed down the list of aspects to be taught by considering the ultimate goal of teaching NOS in school science classes. Finally, the researcher narrowed the scope of NOS in this study by selecting the tentative nature of science (TNOS) as the major feature that is affected by other aspects of NOS. Instead of separating out each component, this research takes a holistic view of NOS. Therefore, the researcher set TNOS as an entity that has three dimensions: epistemology, individual scientists, and sociocultural context. Each dimension strongly binds to the others and all influence the tentativeness in science. This framework was revised by dissertation advisors and an expert in NOS science education. The TNOS framework is described in detail in Chapter 2 and the diagram of TNOS framework is shown in FIGURE 2 (Chapter 2).

2.2) Refining and connecting genetics content listed from step one
In order to present the coherent ideas of genetic contents, all initial ideas of genetics content listed from step one are linked. Examples of the concept map used to illustrate interrelations among ideas are shown in the appendix B.

2.3) Bridging TNOS concepts and genetics

One approach that is strongly suggested by the science education community is to use examples from the history of science to demonstrate aspects of NOS. As a result, the researcher tried to find ways to blend aspects of TNOS with genetic contents and developed a timeline for the discoveries in the history of genetics as a tool to demonstrate concepts of genetics and of TNOS in a holistic narrative.

2.4) Identify intended learning outcomes (ILOs)

The researcher reviewed benchmarks and standards for science teaching, specifically, for genetics and NOS for students in grades 8–9. The ILOs are stated with reference to benchmarks and standards. Some ILOs go beyond what is addressed in the standards but are nonetheless based on the values and goals of science education that expects students to understand the nature and limitations of science in order to make informed decisions as citizens in a science— and technology—based. Following this, ILOs were categorized into understanding and skills.

3) Developing a curriculum rationale

A curriculum rationale is a statement that makes explicit the ideas, values, and educational goals underlying the curriculum. The rationale serves the purpose of justifying the knowledge that students are to acquire as well as justifying the methods and procedures employed in implementing the curriculum. The rationale also serves the related purpose of guiding the planning of other course components, including the values and educational goals as well as the emphasis and tone that the teacher will give to the course. Lastly, the rationale serves as a check on consistency of the various curriculum components in terms of these values and goals. The values and goals expressed in a rationale are related; that is, goals are desirable only as they reflect certain values of the planner (Posner; & Rudnisky. 2006).

In order to develop a rationale for the integrated nature of science curriculum, science education documents, including curriculum documents and science teaching and learning standards both at international and national levels were considered. The goals of science education, especially the goal of understanding the nature of science,

were conceptualized in order to construct a rationale for an integrated science curriculum that meets the values and goals of the curriculum.

4) Refining intended learning outcomes

At this step, ILOs that were initially stated in step two were adjusted by considering educational standards as well as the curriculum rationale and the goals of the curriculum.

5) Forming and organizing units of the curriculum

The process of forming and organizing curriculum units involves acknowledging the fact that it is more practicable for teachers to use this curriculum if the curriculum sequence fits into the recent school curriculum that they have been using. Therefore, the integrated nature of science curriculum uses the genetics unit that is already in place in the common science curriculum. The researcher interviewed science teachers in participating schools in order to gain information about the genetic unit they were teaching. It was found that two schools that participated in the curriculum pilot study and curriculum implementation used the science textbook written by IPST. Topics covered in the genetics unit are: genetics and inheritance of traits, discoveries of Mendel, Mendel's law, genes, chromosomes, disorders on chromosomes and genes, applications of genetic knowledge, genetic engineering, biotechnology and agriculture, and applications of biotechnology. Students studied this material 3 50-minute periods per week. The whole genetic unit takes 8-10 weeks to finish, amounting to 24-30 periods.

6) Developing general teaching strategies

The major goal in developing the integrated nature of science curriculum is to help students learn important ideas of NOS effectively together with traditional science content. Therefore, the instructional strategies specifically focus on teaching approaches and methods that are suggested by the science education community for teaching NOS. The researcher used the preliminary process as a guideline to design TNOS instructional plan. After curriculum implementation, this process was modified to summarize the effective procedure that teachers can use as a guideline to design effective NOS–related instruction.

The preliminary process for designing TNOS instruction includes the following:

- Outlining the scope of NOS aspects to be taught, based on science teaching standards, the curriculum document, and science education research literature. In this research TNOS is the scope of NOS aspects that was taught.
- 2) Making NOS teaching explicit by specifying a set of ILOs consisting of cognitions, skills, and affects, both in NOS and the traditional science concepts taught to students, by taking into account teaching standards.
- 3) Searching for the history of science that is embedded in the science content of the course and selecting pieces of history that best represent aspects of NOS. The history used for NOS teaching can be a long story for teaching the entire unit or course or it can be a short story requiring only a 10–15–minute presentation. The particular selection of history depends on the teacher's personal intention and the context of his/her teaching. For this research, genetics content and the tentative character of science are concepts that students are expected to learn. Consequently, the researcher uses the story of the discovery of genetics to relate Mendelian genetics to contemporary genetics to illustrate how scientific ideas change from the early days of discovery.
- 4) Reading the chosen history carefully and identifying NOS aspects that can be illustrated. This will allow teachers to find ways to integrate aspects of NOS into science content. It should be noted that a single episode the in history of science cannot represent all aspects of NOS. Similarly, only one unit teaching may not be able to illustrate all aspects of NOS. The teacher may thus consider ways to illustrate other aspects of NOS in other units where appropriate. Examples of connections between the history of genetics, genetics concepts, and TNOS concepts are presented in TABLE 4.

TABLE 4 EXAMPLES OF CONNECTIONS BETWEEN THE HISTORY OF GENETICS, GENETIC CONCEPTS, AND TNOS CONCEPTS

Year	Discovery/ Key Story	Genetics	TNOS Concept
rear	Discovery/ Key Story	Concept	TNOS Concept
1865	Gregor Mendel's experiments on peas demonstrate that heredity is transmitted	Discovery of Mendel:	- Characteristics of individual scientist
	in discreet units; the understanding that genes remain distinct entities even if	Mendel's experiment and	- Epistemology of science: The role
	the characteristics of parents appear to blend in their children explains how natural selection could work and	results	of observation and
1866	provides support for Darwin's proposal Mendel's experiment was published as	Mendel's Law	- Epistemology of
	"Experiments in Plant Hybridization." This paper established what eventually	111	science: The role of observation and
	became formalized as the Mendelian Laws of Inheritance.	1/3:	Interpretation - Characteristics of
	 The Law of Independent Assortment The Law of Independent 		individual scientist that influence his work
	Assortion - The Law of Dominance		

- 5) Sequencing the concepts to be taught to students. The instruction should start with simpler concepts and then move to more complex ones. Here, the history of genetic discovery is used as a way to link genetic concepts chronologically from the Mendel's simple laws to more complex concepts in genetics that were discovered later. Aspects of NOS that were identified from stage four are presented through the same story.
- 6) Initially selecting activities for teaching each concept and including scientific investigation and activities that encourage the development of thinking skills by

allowing students to grapple with controversial issues or science-based dilemmas where is possible. In the current study, student decision making on science-based dilemmas is one of the major concerns. Therefore the researcher plans to use science-based dilemmas in early classroom periods to get students to think about what they need to know in order to make decisions on these dilemmas.

- 7) Developing short instructional plans. Specific descriptions of concepts, ILOs, activities, and material were included in each plan. The activities should present both concepts of genetics and TNOS as well as allowing students to reflect on their understanding through discussion, writing, etc.
 - 8) Designing formative assessment for each instructional plan.

7) Planning a curriculum Evaluation

This is the step in which the curriculum developer gathers evidence of the curriculum's outcomes. The major purpose of the evaluation is to gain information to improve the curriculum. The process of curriculum evaluation involves evaluation by experts and conducting a pilot study, as described in parts three and four.

3. Evaluation by experts

The appropriateness and congruence of the integrated nature of science curriculum and instruction plan were checked by an expert panel consisting of five experts: two university professors in science education, one university professor in biology, one science educator from IPST, and one experienced lower secondary school science teacher. The experts were asked to evaluate and make comments on the integrated nature of science curriculum and instructional plan. Results from each expert evaluation were calculated for index of item objective congruence (IOC). If the IOC is higher than 0.5, it means the assessment aspect is appropriate or has internal congruence. The evaluations of curriculum appropriateness and internal congruence are presented below:

1) Curriculum appropriateness

The IOC results from the experts' evaluation indicated that all assessment aspects were between 0.6-1, which indicates that the curriculum is appropriate in all

aspects. The assessment aspects on which there were disagreements among the experts were "the curriculum is effective for teaching the nature of science without creating additional alternative science courses" (IOC 0.6), "the curriculum components reflects the solutions to problems in students' lack of NOS understanding" (IOC 0.8), "the content is correct and clearly stated" (IOC 0.8), "the integrated content appropriately integrates genetics and the nature of science content" (IOC 0.8), "the evaluation and assessment reflect intended learning outcomes" (IOC 0.8), and "the curriculum is up to date" (IOC 0.8).

Summaries of IOC results are shown in TABLE 5. The details of results of the curriculum appropriateness assessment and evaluations are shown in appendix D.

00000

TABLE 5 APPROPRIATENESS OF THE DRAFT CURRICULUM

List of Evaluation	IOC	Meaning
Curriculum rationale	0.8-1	Appropriate
2. Curriculum objectives	1 9 7 8	Appropriate
3. Curriculum content	0.8-1	Appropriate
4. Standards and learning indicators	1 8:	Appropriate
5. Instructional plans and units	1000	Appropriate
6. Evaluation and assessment plans	0.8-1	Appropriate
7. Overall curriculum	0.6-1	Appropriate

2) Curriculum internal congruence

The IOC results of all assessment aspects were between 0.8–1, indicating that the curriculum is appropriate and congruent at all aspects. The assessment aspect that generated disagreement among the experts was "the evaluation and assessments are congruent with the intended learning outcomes" (IOC 0.8) (details in appendix D).

Summaries of comments from the experts are given below:

1) Some language used in the curriculum documents and instructional plans should be revised to avoid colloquialism.

- 2) Classroom activities should provide more opportunities for students to construct and summarize the concepts they learn in their own language.
- 3) Aspects of TNOS addressed in each learning unit should be summarized and clearly stated in the instructional plan and in the student coursebook.
- 4) The instructional plans and course book should provide more guiding questions that teachers can use to initiate students thinking about aspects of TNOS.
- 5) Some genetics concepts should be explained using a combination of illustrations and diagrams.
 - 6) The illustrations in the coursebook should be explained clearly.
 - 7) The coursebook should have references for all illustrations.
 - 8) Some evaluation plans should be revised.

4. Pilot study

The researcher conducted the pilot study in Sriayudhya School during the school break from March 8 to March 24, 2010. Twenty students who had just finished grade 8 and were going to start grade 9 the following academic year participated in pilot study. Lesson plans of four learning units from the total number of five units were tried out during the pilot study. Research instruments consisted of the tentative nature of science questionnaire, the tentative nature of science interview protocol, the decision–making questionnaire, the decision–making interview protocol, and the genetics achievement test and were used to initially examine the effects of the curriculum on student learning. The pilot study faced problems, mainly having to do with the time allocation of learning activities and instructional materials.

Later, instructional plans, instructional materials, and research instruments were modified by:

- 1) Adjusting appropriateness of time allocation for learning activities
- 2) Adjusting appropriateness of instructional materials, for example VDOs and PowerPoint slides
- 3) Providing more basic information to students for doing tasks and activities, for example, for preparing students for their roles in the debate activity

- 4) Revising handouts and student guidebooks in detail
- 5) Revising the sequence of assignments given to students to allow for more time to search for information and to prepare themselves before doing classroom activities.

After revision, the curriculum, instructional plans, and instructional materials were implemented in a classroom of an extra–large secondary school in Bangkok.

Phase 2: Data collection and curriculum implementation

1. Research design

The design of this study was pretest-posttest control-group design. Two classrooms participated in the study. Students in the classroom with the researcher as instructor learned under the integrated nature of science curriculum. The other group, with a co-operating teacher for this study as the instructor, learned using the school's conventional curriculum. Data on students' achievement in genetics understanding, as one of the dependent variables, was collected and scores were compared between the two groups of students. Data on two other dependent variables, namely, students' understanding of TNOS and students' decision making on science-based dilemmas, were collected on only the group of students that learned under the TNOS curriculum

2. Participants

The participants consisted of grade nine students studying in the first semester of the 2010 academic year of a lower secondary school in Secondary Educational Service Area Office 2. The participating school was chosen according to the criteria that the school be an extra-large secondary school under the Office of the Basic Education Commission in Bangkok, Thailand. The school agreed to allow the use of one classroom consisting of 51 students to study under the TNOS curriculum and allowing the researcher to be the instructor. The other classroom consisted of 45 participating students, who learned under the conventional school science curriculum, taught by the cooperating teacher for this study.

3. Research instruments

Research instruments consisted of instruments for exploring students' understanding of TNOS, their decision making on science-based dilemmas, and achievement of genetics understanding.

3.1 Instruments for exploring students' understanding of TNOS

Instruments for exploring students' understanding of TNOS consisted of a TNOS questionnaire and a TNOS interview protocol.

3.1.1 TNOS questionnaire

The TNOS questionnaire was an open-ended questionnaire adapted from the Views of the Nature of Science Questionnaire-Form E (Lederman; & Ko. 2004) and the open-ended questionnaire created by Zeidler and others (Zeidler; et al. 2002). Some questions were adapted to correspond to the purpose of this research-to explore student views focusing on TNOS. Six aspects were generated to explore students' understanding of TNOS: 1) general views of science, 2) tentative nature of science, 3) the process of science, 4) subjectivity in scientific conclusions, 5) the role of opinion and interpretation in science, and 6) the relationship between science and society. The TNOS questionnaire was developed and revised for appropriateness by three science educators who had experience in teaching or conducting research on NOS. The questionnaire was also tried out in the pilot study phrase. The experts' comments along with problems in the pilot study resulted in revising the questionnaire's structure and wording.

3.1.2 TNOS interview protocol

Ten students were randomly selected to participate in the follow up interviews to examine the consistencies and contradictions between their written and verbal responses. The TNOS interview protocol is composed of questions that provided students the opportunity to give verbal responses to the questions they answered on the TNOS questionnaire. More in–depth questions were assigned to students individually to give them opportunity to clarify their responses from the questionnaire. The questions commonly used in the interview were, for example, "What do you mean by saying ________?," "From

the questionnaire, you said that sometimes scientific knowledge can change. Can you give me some examples of cases in which scientific knowledge can change?"

3.2 Instruments for exploring students' decision making on science—based dilemmas

Data regarding student decision making on science-based dilemmas in this research does not intend to judge students' ability to make decisions. On the contrary, the decision-making process illustrates the fact that most science— and technology-based dilemmas/issues do not have a right or wrong answer. This study is based on the assumption that if students understand NOS, they will be able to make wise decisions on science— and technology-based issues. Therefore, the data collection in this part focuses on exploring how students used concepts of TNOS in their decision making.

As were data for the analysis of students' understanding of TNOS, data on students' decision making on science-based dilemmas were collected via the decision-making questionnaire and the decision-making interview protocol as described below.

3.2.1 Decision-making questionnaire

The decision making questionnaire in this research was adapted from the work of Zeidler and others (2002) and Bell and Lederman (2003). Three different scenarios that provided situations and information about modern technology and genetics were given to students: 1) GM papaya, 2) gene therapy, and 3) GM mosquitos and malaria. These scenarios simulated information, specifically, regarding positive information concerning technology that students might likely come across in their daily lives from reading, watching, or listening to public media. Each scenario was followed by three questions, asking 1) whether the student would accept or reject the technology discussed in the scenario, 2) whether the given information in the scenario was sufficient for him or her to make a decision, and 3) if the provided information was not sufficient, what kind of other information they would need in order to make an appropriate decision.

The decision-making questionnaire was developed and revised for its appropriateness by the same experts who evaluated the TNOS questionnaire. The questionnaire was also tried out in the pilot study phase. The experts' comments along with

problems that occurred in the pilot study resulted in a revision of the questionnaire structure and language/wording. Finally, the three scenarios and questions on the decision–making questionnaire were revised.

3.2.2 Decision-making interview protocol

The same group of ten students who participated in the TNOS follow up interview also participated in a decision-making follow up interview in order for the study to gather data on the agreements and contradictions between their written and verbal responses. In the same fashion as the TNOS interview protocol, the decision-making interview protocol was composed of questions that provided students the opportunity to give open-ended verbal responses to the questions. Further in-depth questions were assigned to students individually to give them the opportunity to clarify their responses from the questionnaire.

3.3 Instrument for assessing students' achievement of genetics understanding

A multiple–choice test composed of 30 items was developed to assess students' achievement of genetics understanding. The process of developing the test involved the following steps:

- 1) The researcher analyzed learning standards and learning indicators from the National Science Curriculum by using the analysis table relating to its content and learning indicators.
- 2) A genetics achievement test was drafted. The test items consisted of five types of questions: knowledge, comprehension, application, analysis, and evaluation.
- 3) The draft of the genetic achievement test was initially checked for content validity, and appropriateness by dissertation advisors and revised accordingly.
- 4) The first revised version of the genetic achievement test was examined and verified for content validity and appropriateness by three experts: one biologist, one science educator, and one science teacher who taught the genetics unit in a lower secondary school.

- 5) The quality of the test was considered from the Index of Item Objective Congruence (IOC). The test items with an IOC index above 0.50 were selected and revised in accordance with experts' comments and suggestions.
- 6) The revised version of the genetic achievement test was tried out on 203 students who had studied the genetics unit at Chitrlada and Sriayudhya Schools to determine difficulty (p) and item discrimination (r). The test items with a p index between 0.20-0.80 and an r index above 0.20 were selected.
- 7) The internal consistency reliability of the genetics achievement test was determined by using Kuder-Richardson 20. The reliability of the test was 0.93.

4. Data collection

0000000 The new curriculum was implemented for 8 weeks in the first semester of academic year 2010. Data from students participating in the integrated nature of science curriculum were collected on 1) their understanding of TNOS, 2) decision making on science-based dilemmas, and 3) achievement in genetics understanding. Data from students in the conventional curriculum class were collected on their achievement in genetics understanding. All data were collected before and after curriculum implementation. A summary of instruments used and data collected is presented in TABLE 6.

TABLE 6 INSTRUMENTS AND DATA COLLECTION

	Before	After	•
Instruments	Curriculum Implementation		Subjects
TNOS questionnaire	✓	✓	All students in the integrated nature of
			science curriculum class
2. TNOS interview protocol	✓	✓	Samples of ten students from the integrated
			nature of science curriculum class
3. Decision-making	✓	✓	All students in the integrated nature of
questionnaire			science curriculum class
Decision-making interview	✓	✓	Samples of ten students from the integrated
protocol			nature of science curriculum class
5. Achievement in genetics	✓ ✓		All participating students
understanding test			

Phase 3: Analysis of effects of the curriculum on students' learning

1. Students' understanding of TNOS

.

Data regarding students' understanding of TNOS were analyzed quantitatively, to examine students' levels of understanding, and qualitatively, to examine the contents of their understanding.

1.1 Levels of students' understanding of TNOS

Students' understanding was quantitatively analyzed by scoring their responses on each TNOS questionnaire. Each question had a possible total score of 5 and was used to rank students according to their level of understanding. The total score was determined by the quality of each component of a student's response according to the correctness of their answers.

TABLE 7 DEFINITIONS OF SCORING STUDENTS' UNDERSTANDING OF TNOS

Score	Definition				
Correctness of st	Correctness of student's answer (Yes/No Question, 0-1 scale points)				
0	incorrect answer				
1	correct answer				
Explanation (0-2	scale points)				
0	Missing/incorrect answer				
1	Partial and correct				
2	Complete and correct				
Examples (0-2 sc	ale points)				
0	Missing or incorrect answer				
1	Partial and correct				
2	Complete and correct				

Total = 5 scale points for each question

0 = Misconception	3 = Simple
1 = Limited	4 = Competent
2 = Naïve	5 = Sophisticated

1.2 Contents of students' understanding of TNOS

The contents of students' understanding of TNOS were analyzed in order to explain the different views students reported on particular TNOS aspects. Each meaningful statement that students made in their responses was examined. Primarily, interpretation was done based on the unit of analysis. However, the interpretation was enhanced by examining the context in which the unit of analysis occurred. "Context" here means relevance on either side of a unit of analysis. If the meaning of the unit of analysis was not clear, then the context of the unit of analysis was examined. This was not often necessary but was helpful in a few occasions. The units of analyses were coded and recoded several times and put into categories to describe the different views students had.

2. Students' decision making on science-based dilemmas

The results of students' decision making on science-based dilemmas were analyzed and described quantitatively, as determined by their scores on each scenario of the decision making questionnaire, and qualitatively, by analyzing content to determine what information students took into account when making decisions on science-based dilemmas.

2.1 Levels of students' decision making on science-based dilemmas

Levels of students' decision making on science-based dilemmas were determined by the types of information they took into account when making decisions. The levels are:

- Level 1 Student made a decision without taking into account additional information besides what was already provided in the scenario.
- Level 2 Student made decision by taking into account additional information but not related to TNOS dimensions besides what was already provided in the scenario.
- Level 3 Student made a decision by taking into account additional information besides what was already provided in the scenario and the information was related to one TNOS dimension.
- Level 4 Student made a decision by taking into account additional information besides what was already provided in the scenario and the information was related to two TNOS dimensions.

Level 5 Student made a decision by taking into additional information besides what was already provided in the scenario and the information was related to all three TNOS dimensions.

2.2 Content of students' decision making on science-based dilemmas

Similar to the process for collecting data regarding student understanding of TNOS, two instruments was used here. One instrument was the decision–making questionnaire that provided scenarios and related scientific information, followed by sets of open–ended questions that asked students to make decisions and provide reasons of making such decisions. Student responses were searched for patterns and coded by using categories according to the TNOS framework as well as other optional categories that might be suggest themselves. The TNOS concepts that students connected to the reasons for their decisions were categorized and counted for frequency. Other reasons, besides TNOS concepts, that students cited in their decision making were also reported.

3. Validity and trustworthiness of qualitative data collection and analysis

In order to ensure validity and trustworthiness of the research, the researcher used three strategies: low-inference description, peer review, and data triangulation.

3.1 Low-inference descriptions

Low-inference descriptions are descriptions that are phrased very similarly to the participants' account and the researchers' field notes. This strategy allows the reader to experience the participants' actual language and personal meanings (Johnson; & Christensen. 2004).

3.2 Peer review

Peer review is the discussion of the researcher's interpretations and conclusions with other people. This includes discussion with a disinterested peer who is not involved in the research and a peer who is familiar with the research (Johnson; & Christensen. 2004). In this study, the researcher sorted and categorized students' responses several times in order to arrive at recurrent themes. Definitions of categories and subcategories and examples of student responses were presented to the dissertation

advisors and were modified as necessary. Also, samples of the data were independently categorized by a disinterested peer who had background knowledge in NOS and had experience in conducting qualitative research. The results from the disinterested peer and the researcher were compared, discussed, and modified until both agree with the categorization.

3.3 Data triangulation

Data triangulation is the use of multiple data sources to help understand a phenomenon (Johnson; & Christensen. 2004). In this study, ten students' responses on the TNOS questionnaire and the decision-making questionnaire were examined and compared against their follow up interviews for confirmatory and contradictory statements. Students' responses from both the questionnaires and the interviews were in good agreement.

4. Students' achievement of genetics understanding

Students in both the TNOS curriculum class and the traditional curriculum class were tested for their achievement in genetics understanding in a pretest and posttest. Using the ANCOVA statistical model, average posttest scores from both classes were compared, with their pretest scores as the covariate.

CHAPTER 4

RESEARCH RESULTS

This chapter presents results regarding the development of an integrated nature of science curriculum designed to enhance student understanding of the nature of science and decision making with regard to science–based dilemmas. The findings of the study include the following four sections:

Section 1: What are the components of the integrated nature of science curriculum?

Section 2: What changes occur in students' understanding of the tentative nature of science (TNOS) after the curriculum's implementation?

Section 3: What changes occur in students' decision making after implementation of the curriculum?

Section 4: Is students' understanding of genetics any better among those who learned under the TNOS curriculum compared to those who learned under the conventional curriculum?

Section 5: Examples of students' cases

Section 1: What are the components of the integrated nature of science curriculum?

The integrated nature of science curriculum is described in terms of the following components:

1. Rationale of the curriculum

The rationale of the curriculum was based on students' educational background in science at both the national and international levels and attempted to enhance students' understanding of the nature and limitations of science and to apply such understanding to their decision making.

2. Curriculum objectives

The objectives of the curriculum were as follows:

- 1) To foster an understanding of the tentative nature of science (TNOS) in terms of trustworthy and rational knowledge that, at the same time, is uncertain and subject to change
- 2) To foster an understanding of the development of scientific knowledge related to its epistemology, sociocultural context, and to the characteristics of individual scientists who develop such knowledge
- 3) To foster an understanding of the fundamental principles of genetics in terms of the process of genetic inheritance, the function of genes, chromosomes, and DNA as well as to be able to apply this knowledge to daily life and make decisions about science-based issues that involve genetics
- 4) To impart the ability to make decisions on science-based issues by taking into account the nature of science

3. Curriculum content

The curriculum content consists of the fundamental principles of genetics integrated with TNOS presented in five learning units, namely, "Mendel and the Origin of Genetics," "The Rediscovery of Mendel," "The Chromosome: The Evidence of Genes," "DNA: the Key to Solving the Genetic Quest," and "Genetics, Lives, and Environment."

4. Learning standards and learning indicators

The learning standards and learning indicators related to the understanding of genetics are derived from the National Basic Curriculum learning standards and learning indicators. All learning indicators for grades 7–9, from the learning standard 1.2 of Content Strand 1: Living Things and Living Processes, and some learning standards and learning indicators from Content Strand 8: The Nature of Science and Technology, were stated in the curriculum. Also, additional learning indicators related to other aspects of TNOS were added to support the goals of the curriculum, which emphasized students' understanding of TNOS. Details of learning standards and learning indicators are shown in appendix B.

5. Instructional plans

The instructional plans for the integrated nature of science curriculum were based on two instructional approaches: a historical approach and an explicit-reflective approach. Multiple types of instructional activities were used for the instructions as shown in the highlighted activities in TABLE 8.

TABLE 8 LEARNING UNITS, CONTENTS, AND INSTRUCTIONAL PLANS FOR TNOS
CURRICULUM

Unit Title	Genetic contents	TNOS content	Highlighted Instructional Activities	Time (periods)
Mendel and the origin of genetics	 Mendel's experiment and his discovery Dominant and recessive traits 	 Influence of scientists' experience and skills on their investigations Observation and interpretation as fundamental to scientific 	- Watching VDOs and reading accounts of Mendel and his experiments	5
	- Probability and genetic inheritance	conclusions - How society impacts scientific endeavors - Science as attempts to find patterns in natural phenomena	Designing scientific investigationsSmall group discussion	

Table 8 (Continued)

Unit Title	Genetic contents	TNOS content	Highlighted Activities	Time (periods)
The Chromosome :	- Chromosome - and genetic	Influence of accepted theories on the work of	- Listening to the story of	6
the evidence of	inheritance	scientists	Thomas Hunt	
genes	- Sex -	Trustworthiness of	Morgan	
	chromosome	scientific knowledge and	- Mysterious	
		the process of replication	cubic	
		.0000000		
	- Exceptions to -	Changes of scientific	- Small group	
	Mendel's law	knowledge: The role of	discussion	
	- Genetic	new evidence		
	disorder -	Observation and		
	A . 4 8 -	interpretation as	: 1	
	# : Y # -	fundamental to scientific	Y : 1	
	W: 51 % -	conclusions	7:11	
DNA: the Key	- Structure and -	Influence of society on	- Watching VDOs	4
to solving	functions of	science	on the	
genetic quests	DNA -	The role of the scientific	discovery of	
	- Genetics and	community and	DNA	
	new technology	development of science	- Debating	
	- Genetics and -	The importance of	- Small group	
	diversity of	evidence and scientific	discussion	
	lives	knowledge		
Genetics, lives,	- Biodiversity -	Wider uses of scientific	- Walking gallery	4
and	- Summary of	knowledge	- Small group	
environment	key ideas of -	Summary of the key story	discussion	
	genetics	of the development of		
	-	knowledge of genetics		

6. Assessment plan

The assessment plan focused on assessing students' understanding of genetics, students' understanding of TNOS, and students' ability to make decisions regarding

science-based dilemmas. There were three stages of assessment, namely, were before instruction, during instruction, and after instruction

Section 2: What changes occurred in students' understanding of TNOS after the curriculum's implementation?

1. Students' general views of science

Different from other aspects of TNOS, students' responses regarding their general view of science were only qualitatively analyzed. What we might be seeing here is probably what is foremost in the students' minds when they think of science. The purpose of this question is only to elicit the ideas that first pop into students' minds. This probe was not intended to elicit more depth and details of students' responses. Rather, deeper and more detailed assessments of students' understandings of TNOS were expected to emerge from more specific questions on each aspect of TNOS. The researcher looked for meaningful statements in their responses to these questions, coded them, and put them into categories. Finally, students' general views of science were grouped into five major categories: 1) academic discipline, 2) credibility, 3) knowledge of science, 4) methods to acquire knowledge, and 5) science as environment and surroundings. Numbers of students responding to each category were compared between before and after the curriculum implementation and are presented in TABLE 9 and FIGURE 5.

TABLE 9 STUDENTS' GENERAL VIEWS OF SCIENCE BEFORE AND AFTER THE CURRICULUM IMPLEMENTATION

	Octobrom 10 objects on the second	No. of students	
	Category/Subcategory	Before	After
1.	Academic discipline	27 (52.9%)	23 (45.1%)
	1.1 Science is a study of natural phenomena		
	1.2 Science consists of many related disciplines		
2.	Credibility	25 (49.0%)	25 (49.0%)
	2.1 Science is rational		
	2.2 Science can be proven		
	2.3 Scientific knowledge is profound		
3.	Knowledge of Science	14 (27.5%)	21 (41.2%)
	3.1 Science creates and uses theories and laws	1:4	
	3.2 Science can be applied to technology and	-: 1	
	artifacts	8:1	
	3.3 Science is reality	2:	
	3.4 Science is subject to change	·//	
4.	Method to acquire knowledge	13 (25.5%)	15 (29.4%)
	4.1 Science requires experiment		
	4.2 Science is about the use of science process		
	4.3 Science is about problem solving		
	4.4 Science requires analytic thinking		
	4.5 Science requires observation		
5.	Science as environment and surrounding	6 (11.8%)	6 (11.8%)

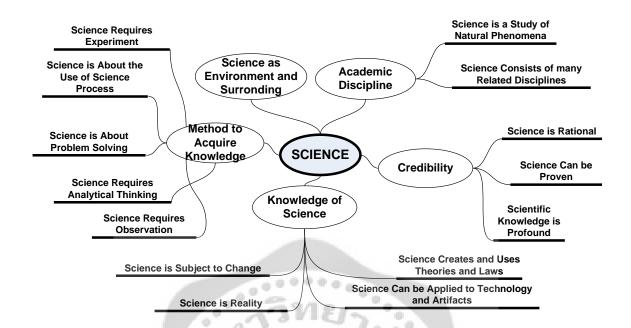


FIGURE 5 STUDENTS' GENERAL VIEWS OF SCIENCE

As seen in TABLE 9, before the implementation of the curriculum, students viewed science largely as disciplinary (27 students), follow by credibility (25 students), knowledge of science (14 students), as a method to acquire knowledge, and science as environment and surrounding (6 students), respectively. After the curriculum was implemented, there was no large change in students' general views of science, except for the knowledge of science, which increased from 14 to 21 students. Further descriptions of students' general views of science can be seen according to the five categories presented below:

1) Academic discipline

In this research, "academic discipline" is used to refer to an academic area of study. Students' responses showed that they viewed science as an academic discipline in two different ways, namely, as a study of natural phenomena and as a discipline that consists of many related disciplines, basically physics, biology, and chemistry. Before the curriculum was implemented, there were 27 students who reported that they viewed science as an academic discipline. This number slightly decreased to 23 students after implementation.

2) Credibility of science

In this research, "credibility" refers to trustworthiness. Students made statements indicating their view of the credibility of science, stating that science is rational, science can be proved, and scientific knowledge is profound. Before implementation of the curriculum, 25 students found science to be credible. There was no change in the number of students responding to this view after implementation.

3) Knowledge of science

Many students thought of scientific knowledge when they thought of science. Some students thought that science creates laws and theories as well as using them to explain phenomena. Meanwhile, some students indicated that science can be applied to technology and artifacts. Additionally, some students stated that science is reality, while another group of students stated that science is subject to change.

4) Method to acquire knowledge

This category focused on student responses regarding methods involved in science, namely, experiments, the scientific process, problem solving, uses of analytical thinking, and observation. Before the curriculum was implemented, 13 students thought of science as comprised of methods to acquire knowledge. This number increased to 15 after implementation.

5) Science as related to the environment

Both before and after the curriculum was implemented, 6 students considered science to be related to the environment.

"Everything surround us is all science."

Student #1, #4, before curriculum implementation

"Science is everything surrounding us."

Student #15, #33, #43, before curriculum implementation

2. Students' understanding of the tentativeness of scientific knowledge

To assess students' understanding of the tentativeness of scientific knowledge, students' responses from the TNOS questionnaire were analyzed and described in two ways. The first was via quantitative analysis that described students' overall levels of understanding as determined by scoring all responses to the question about tentativeness of scientific knowledge from the TNOS questionnaire. The second was via qualitative analysis that was done by content analysis determined by categorizing each meaningful statement from students' responses.

2.1 Levels of students' understanding of the tentativeness of scientific knowledge

Student understanding of tentativeness of scientific knowledge was scored on a scale ranging from 0 to 5. (Details of the scoring rubrics and their description are presented in chapter 3.) Comparisons of levels of students' understanding of the tentativeness of scientific knowledge before and after the curriculum's implementation are presented in TABLE 10 and FIGURE 6.

TABLE 10 LEVELS OF STUDENT UNDERSTANDING OF THE TENTATIVENESS OF SCIENTIFIC KNOWLEDGE

Caara	Description	Num	bers
Score	Description	Before	After
0	Misconception	2 (3.9%)	0 (0.0%)
1	Limited	8 (15.7%)	0 (0.0%)
2	Naive	20 (39.2%)	1 (2.0%)
3	Simple	12 (23.5%)	12 (23.5%)
4	Competent	9 (17.6%)	25(49.0%)
5	Sophisticated	0 (0.0%)	13 (25.5%)
	Total	51(100%)	51 (100%)

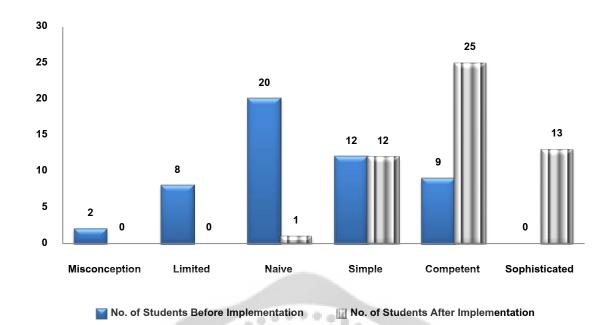


FIGURE 6 LEVELS OF STUDENT UNDERSTANDING OF THE TENTATIVENESS OF SCIENTIFIC KNOWLEDGE

TABLE 10 and FIGURE 6 show that before curriculum implementation, 30 students understood the tentativeness of scientific knowledge only at the "naïve" level or below, while none understood this concept at the sophisticated level. After the curriculum was implemented, the level of students' understanding of the tentativeness of scientific knowledge notably improved; 50 students understood the tentativeness of scientific knowledge at least the simple level, and 13 understood the concept at the sophisticated level.

Students, particularly at lower levels, were traced to determine how they their levels of understanding changed. The results are described as follows:

Before implementation of the curriculum, there were only 2 students who held the misconception that scientific knowledge never changes, which means that almost all students understood correctly that scientific knowledge can change. However, 8 students understood the concept of the tentativeness of scientific knowledge at a limited level. That is, they were unable to explain how scientific knowledge changes or to even give an example.

Students who held misconceptions of scientific tentativeness clearly indicated that scientific knowledge has been proven to be true and will never change. Furthermore, their responses indicated that they confused facts with scientific theories and laws.

"Scientific laws and theories cannot change. It is wrong to change what has already been stated. The examples of these laws and theories are gravitation, sunrise—sunset, and the rotation of the earth."

Student #19, before curriculum implementation

A student emphasized that laws and theories are "proven" to be true by multiple, repeated experiments.

"Scientific laws and theories cannot change because they came from numerous instances of experiments from different scientists. They are practical and can be proven. For example, in the acid-base experiment, this experiment will never change. Any period of time that you touch the litmus paper with acid, its color changes to red just as similar when you touch it with a base, its color changes to blue."

Student #23, before curriculum implementation

As for the rest of students who reported that scientific knowledge can change, there were limitations in their understanding about what causes the changes. In particular, the group of students at the "limited" level gave very short and ambiguous explanations of how scientific knowledge changes. In addition, the examples they gave to illustrate changes of scientific knowledge were incorrect or sometimes irrelevant to scientific knowledge.

"Scientific knowledge can change. They can change in some cases. Otherwise, there will be no word 'error' For example, Galileo's theory says that if we drop two objects from the same height, no matter their weights are the same or not, they will reach the ground at the same time. Actually two objects may not reach the ground at the same time."

Student #20, before curriculum implementation

"Scientific laws and theories can change because they are uncertain. For example, D = m/v can be changed to $m = v \times D$."

Student #35, before curriculum implementation

After implementation, there were notable improvements in students' understandings. The two students who held misconceptions developed their understanding to competent levels. Although there was incompleteness in their explanation on what causes changes in scientific knowledge, their responses showed that they were able to elaborate several aspects to explain scientific tentativeness. In addition, they were able to elaborate the story of Mendelian genetics to illustrate how scientific knowledge can change.

"Laws and theories can change. They were discovered by the principle of science and then communicated to society. Just like the idea of genetic inheritance. Sometimes, when genes are inherited from parents by their offspring, there can be incomplete dominance that causes the real inheritance to be different from the prediction."

Student #19, after curriculum implementation

"Laws and theories can change. When the society changes, people's beliefs change as well, and so does the social support that affects the change. When the time period changes, scientists will develop more knowledge on a certain thing that cause changes of the recent theories. For example, there is Mendel's ratio. He said it (genetic inheritance) will always be 3:1 ratio but there are exceptions to the ratio such as when the breeding between a red flower and a white flower can results in pink flowers, not 3:1 of red: white."

Student #23, after curriculum implementation

An improvement was also found in the group of students at the "limited" level. 2 students made dramatic improvements and reached the "sophisticated" level, 2 students improved to the "competent" level, while the other 4 improved slightly and rose to the "simple" level. It was clearly seen that students who improved to the "sophisticated" level

were able to explain many causes of changes in scientific knowledge, especially the key idea of new data that leads to the revision of recent knowledge.

"Laws and theories can change. In the future, we have more time, more technology. We do more experiments and redo them over and over; that makes us know something more deeply. We have more accurate data, together with different people with different ideas about investigation. For example, Mendel's law of inheritance, at first Mendel made the investigation with pea plants and failed to get the same results with another kind of plant, which caused his ideas to not be accepted at the time. When time passed, scientists knew more about the plant and found out that the plant reproduced asexually. Then they revised Mendel's finding and accepted it as Mendel's law. Also, the idea that Pluto was a planet was recently changed and Pluto is not considered a planet anymore."

Student #20, after curriculum implementation

2.2 Content of students' understanding of the tentativeness of scientific knowledge

۰

The content of students' responses on the tentativeness of scientific knowledge from TNOS questionnaire was analyzed and put into two major categories to represent students' different views on the tentativeness of scientific knowledge: 1) scientific knowledge is absolute, and 2) scientific knowledge is subject to change. The category scientific knowledge is subject to change was divided into multiple levels of subcategories as presented in TABLE 11.

TABLE 11 STUDENTS' DIFFERENT VIEWS OF THE TENTATIVENESS OF SCIENTIFIC KNOWLEDGE BEFORE AND AFTER CURRICULUM IMPLEMENTATION

Catagomy/Cithastasiami	No. of s	No. of students	
Category/Subcategory	Before	After	
Scientific knowledge is subject to change	49 (96.1%)	51 (100%)	
1.1 Acceptance of knowledge	18 (35.3%)	30 (58.8%)	
1.1.1 Knowledge can be proved	8 (15.7%)	4 (7.8%)	
1.1.2 Knowledge can be disproved	6 (11.8%)	14 (27.5%)	
1.1.3 Knowledge is accepted if it is reasonable	5 (9.8%)	14 (27.5%)	
1.1.4 Knowledge can change if it is accepted by	0 (0.0%)	9 (17.6%)	
society			
1.2 Causes of the change	17 (33.3%)	25 (49.0%)	
1.2.1 Knowledge changes because of correction of	10 (19.6%)	10 (19.6%)	
error	1:4		
1.2.2 Knowledge changes because of technology	4 (7.8%)	7 (13.7%)	
1.2.3 Knowledge changes because of re-experiment	4 (7.8%)	6 (11.8%)	
1.2.4 Knowledge changes because of physical	3 (5.9%)	2 (3.9%)	
changes of objects	·		
1.2.5 Knowledge changes because of different ways	0 (0.0%)	8 (15.7%)	
of interpretation			
1.3 Characteristics of the change	14 (27.5%)	17 (33.3%)	
1.3.1 Knowledge advances	8 (15.7%)	5 (9.8%)	
1.3.2 "Knowledge" is refuted as false	6 (11.8%)	15 (29.4%)	
1.4 Other ambiguous views of tentativeness	12 (23.5%)	2 (3.9%)	
1.4.1 Scientific knowledge is uncertain	9 (17.6%)	2 (3.9%)	
1.4.2 There is nothing absolute in human endeavors	3 (5.9%)	0 (0.0%)	
2. Scientific knowledge is absolute	2 (3.9%)	0 (0.0%)	
2.1 Scientific knowledge is absolute and never			
changes			

As shown in TABLE 11, students' views of the tentativeness of science were divided into 2 major categories, namely, that scientific knowledge is absolute and that scientific knowledge is subject to change. The majority of students (49 students) believed that scientific knowledge is subject to change. On the contrary, only 2 students had the misconception that scientific knowledge is absolute. In addition, students' responses reflected attitudes regarding changes in scientific knowledge—on acceptance of knowledge (18 students), causes of the change (17 students), and characteristics of the change (14 students). Also, other ambiguous views were found (12 students). After the curriculum was implemented, all students reported that their views regarding scientific knowledge were subject to change. In addition, responses related to such changes increased in numbers of responding students. For the most part, more numbers of students reflected their views of changes of scientific knowledge in terms of acceptance of the knowledge (30 students), follow by causes of the change (25 students), and characteristics of the change (17 students). Furthermore, the number of students who reported ambiguous views regarding the tentativeness of scientific knowledge notably decreased to 2 students.

Further descriptions on students' views of the tentativeness of scientific knowledge are:

1) Scientific knowledge is absolute

According to this view, students believed that scientific knowledge is absolute and never changed, which was considered a misconception. There were only 2 students who held this view before curriculum implementation. However, this misconception disappeared after implementation.

"Laws and theories cannot change. It is wrong to change what has already been stated. The examples of these laws and theories that will never change are gravitation, sunrise-sunset, and the rotation of the Earth."

Student #19, before curriculum implementation

2) Scientific knowledge is subject to change

Among the 49 students who believed that science is subject to change, there was a variety of responses, which can be categorized into four major categories: causes of the change, acceptance of knowledge, characteristics of the change, and other ambiguous views regarding the tentativeness of scientific knowledge.

2.1) Causes of the change

The first major category focuses on what makes scientific knowledge change. Before curriculum implementation, responses of 17 students indicated an awareness of the tentativeness of scientific knowledge in terms of the causes of changes in scientific knowledge. Different views on what makes knowledge change were found. Basically, students reported that scientific knowledge changed because scientists corrected past errors in their understanding (10 students). In addition, students reported that scientific knowledge changed as a result of new technology (4 students) and reexperimenting (4 students). Also, some students thought physical changes of the objects of scientific investigation caused changes in scientific knowledge (3 students). For example, one student's response indicated his understanding that scientific knowledge changed because of changes in nature.

"Laws and theories came from nature and nature is always changing."

Student #5, before curriculum implementation

After curriculum implementation, the number of students who responded to the category of causes of the change increased to 25. Interestingly, 8 students focused on the topic of interpretation in science and reported that scientific knowledge can change because it can be interpreted differently.

"Theories can change and so do laws. Theories come from scientists' reasoning and interpretation. The interpretation made by a person at one period of time can be different from the interpretation made by another person who may have a different background and who lives in a different society with different values and a different culture."

Student #48, after curriculum implementation

Meanwhile, there were only small changes in the numbers of students attributing changes to correction of errors, technology, physical changes of objects, and re–experiments.

2.2) Acceptance of new knowledge

The second major category includes student assertions about the acceptance of scientific knowledge. Before curriculum implementation, 18 students responded to this category. However, there was variety in their responses. Eight students indicated that scientific knowledge can be proven to be true. These students believed that when a new scientific claim arises, it must be proven correct and "better" than the previous claim. On the other hand, 6 students exhibited more informed views by asserting that scientific knowledge can be disproven. In other words, they indicated that scientific knowledge can be disproven.

"Laws and theories can be changed if we can prove that they are not true."

٠

Student #28, before curriculum implementation

Meanwhile, 5 students indicated that new claims can be accepted if they are more reasonable than the old claims.

After curriculum implementation, the number of students who responded to the category of acceptance of knowledge dramatically increased to 30. A new kind of response was also found: nine students indicated that scientific knowledge can change if the new knowledge is accepted by society.

"Laws and theories can change. There can be other new scientists who discover laws and theories that are different from what has been discovered by older scientists. If the new laws and theories are widely accepted by society, then we can change laws and theories. For example, Mendel's law indicated that genes are independently assorted, while Morgan said that there are exceptions to this law."

Student #23, after curriculum implementation.

Meanwhile, the number of students who responded to the view that knowledge is accepted if it is reasonable and that knowledge can be disproven gradually increased to 14. On the contrary, the number of students who indicated that knowledge can be proven decreased to 4.

2.3) Characteristics of the change

The third major category emphasized the responses regarding the characteristics of the change. Before curriculum implementation, 14 students responded to this category. Their responses indicated two different types of change: progression, which reflected students' views that new scientific knowledge was an improvement and more correct than previous knowledge (8 students), and refutation, which reflected student views that scientific knowledge can be challenged and contradicted by new claims (6 students).

"We created theories. Later, if we have better theories, we can just use them. Science is not perfect. It is progressing and new theories can always developed."

Student #6, knowledge is advanced, before curriculum implementation

"Scientific knowledge can be changed. When time passes, there might be new discoveries that refute the theories we had."

Student #41, knowledge is refuted, before curriculum implementation

"With more trustworthy experiments, theories and laws can be overthrown by new ones."

Student #48, refutation of knowledge, before curriculum implementation

After curriculum implementation, the total number of students who wrote about characteristics of changes in science increased to 17. Fifteen students held the view that scientific knowledge can be refuted, and 5 students thought that knowledge advanced.

2.4) Other ambiguous views on tentativeness

The last category consisted of responses that showed no specific explanation of changes in scientific knowledge. Before curriculum implementation, there were 12 students who reported ambiguous views regarding tentativeness. Nine students

simply said that scientific knowledge can change because they were uncertain while 3 students said science is a human activity, and therefore it can change. After the curriculum implementation, the number of students holding ambiguous views dramatically decreased to 2 students.

3. Students' understanding of the process of science

To assess students' understanding of the process of science, their responses to the TNOS questionnaire were analyzed and described in two ways. The first used quantitative analysis to describe the general level of understanding determined by analyzing all responses to the question about the process of science from the TNOS questionnaire. The second used qualitative analysis, which was done by content analysis determined by categorizing each meaningful statement from students' responses.

3.1 Levels of students' understanding of the process of science

Students' understanding of the process of science was scored from 0 to 5.

Details of the scoring rubrics and their description are presented in chapter 3. The comparison of levels of students' understanding of the process of science before and after the curriculum implementation is presented below in TABLE 12 and FIGURE 7.

TABLE 12 LEVELS OF STUDENT UNDERSTANDING OF THE PROCESS OF SCIENCE

S	Description	No. of s	students
Score	Description	Before	After
0	Misconception	18 (35.3%)	5 (9.8%)
1	Limited	4 (7.8%)	1 (2.0%)
2	Naive	20 (39.2%)	18 (35.3%)
3	Simple	8 (15.7%)	16 (31.4%)
4	Competent	1 (2.0%)	4 (7.8%)
5	Sophisticated	0 (0.0%)	7 (13.7%)
	Total	51 (100%)	51 (1000%)

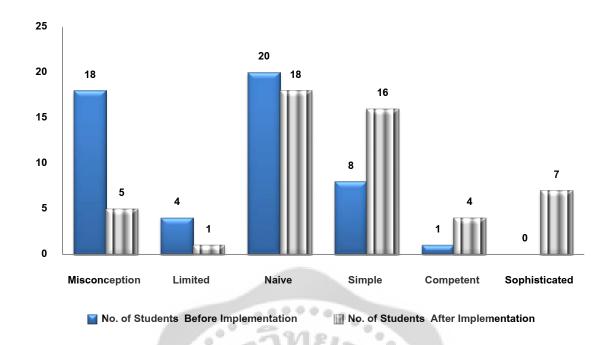


FIGURE 7 LEVELS OF STUDENT UNDERSTANDING OF THE PROCESS OF SCIENCE

TABLE 12 and FIGURE 7 show that before the curriculum implementation 42 students understood the process of science at lower than the "simple" level. After the curriculum implementation, students' understanding slightly improved; 27 of them understood the scientific process at levels higher than "naïve." However, many of them (16 students) still understood the process of science only at the "simple" level, while even fewer were at the "sophisticated" and "competent" levels (7 and 4 students, respectively).

After tracing students at the lower levels of TNOS understanding, it was found that, before the curriculum implementation, 18 students were at the "misconception" level. For the most part, they thought that science proceeds in a universal step-by-step method. There were also small numbers of students who reported that the scientific process involved searching for information from the Internet and books. Some students' understanding of the process of science was considered limited because they reported that the process of science is non–universal. However, they failed to note that the fundamental process of science relies on observation and interpretation to construct knowledge.

After the curriculum was implemented, there was improvement in students' understanding. Of the original 18 students who initially had misconceptions of the process

of science, 5 had notably advanced to the "sophisticated" (3 students) and "competent" (2 students) levels. In addition, 4 students moved to the "simple" level and 6 improved to the "naïve" level. However, there were 3 students who still harbored misconceptions regarding the scientific process.

Students who notably improved their understanding to the "sophisticated" level noted the processes of observation and interpretation on their responses as well as explaining the flexibility in the process. For example, Student #22 reported that the process of science is not universal since some scientific investigations may not require experiments but require observation and interpretation to construct new knowledge.

"The process of science includes making observation, collecting data, interpreting data, and reaching conclusions. It's not necessary for all scientists to use the same process in their investigations. In some cases they don't have to do experiments; they merely observe and interpret data. For example, William Bateson looked at other scientists' experimental results and interpreted those results to make conclusion."

Student #22, after curriculum implementation

Meanwhile, another student was considered "sophisticated" because he noted the process of observation and interpretation as well as being able to explain why these process are important in science.

"The process of science involves observing, interpreting, and reaching conclusions to construct laws and theories. All scientists need to use this process because without observing, they will not find data and patterns of phenomena that are necessary for the next step of interpretation and reaching conclusions."

Student #30, after curriculum implementation

Interestingly, two students' declined from "naïve" and "competent" to "misconception." Before curriculum implementation, both students reported that the process of science was the traditional step-by-step scientific method, but they indicated that this method is flexible and that it was not necessary to that it be strictly followed. Student #16 explained quite reasonably that some steps of the method were not required for some types

of investigation; therefore he was considered "competent." Meanwhile, Student #35 showed his "naïve" understanding by indicating that some processes can be skipped and that otherwise some scientists would be left behind others.

After the curriculum was implemented, the two students mentioned above indicated that it was essential to follow the steps strictly. Student #16 combined the process of interpretation with the traditional step-by-step method. In addition, he emphasized that the process he mentioned is universal and must be followed accordingly.

"The process of scientific investigation is 1) observation, 2) questioning, 3) setting hypothesis, 4) doing experiment, 5) interpreting, 6) making a conclusion. All scientists need to follow these steps because without observation, we will have nothing to question, to set a hypothesis, to do an experiment, to interpret, or to make conclusions. This process is continuous. Without one step, other steps cannot occur"

Student #16, after curriculum implementation

The follow-up interview revealed that students may think of different things when they respond to the questionnaire and that this may lead to misinterpretation regarding students' understanding. Student #16 was one student who participated in follow-up interviews, both before and after the curriculum implementation. His interview responses were always consistent with his questionnaire responses. Right before finishing the post-curriculum implementation interview, the researcher specifically asked the reason that he changed his view on the process of science. Student #16 was surprised at himself for changing his own answer after the curriculum implementation. After the researcher reminded him of his answer from before curriculum implementation, he explained that before the curriculum implementation, he was thinking of "all kinds of science," and that therefore the processes of all the different disciplines of science could not be the same. Nevertheless, he was thinking of only experimental science when he was responding to the questionnaire and follow-up interview after implementation. From his perspective, all experimental science uses the step-by-step traditional method all the time. He also

mentioned that this method is taught in the school's alternative science course for 10th graders.

3.2 Content of students' understanding of the process of science

The content of students' responses regarding the process of science from the TNOS questionnaire was analyzed and put into categories to represent students' different views on the TNOS aspect. Finally, two major categories were determined: 1) the process of science is universal, and 2) the process of science is adaptable. The subcategories indicated the students' description of the process of science in both major categories occurred in the same manner, as presented in TABLE 13.

TABLE 13 STUDENTS' DIFFERENT VIEWS OF THE PROCESS OF SCIENCE BEFORE AND AFTER THE CURRICULUM IMPLEMENTATION

.00000

	Catagory/Subastagory	No. of students	
	Category/Subcategory	Before	After
1.	Process of science is adaptable	35 (68.6%)	39 (76.5%)
	1.1 Traditional step-by-step method	25 (49.0%)	22 (43.2%)*
	1.2 Systematic	5 (9.8%)	5 (9.8%)
	1.3 Unsystematic	2 (3.9%)	0 (0.0%)
	1.4 Observation-interpretation	0 (0.0%)	11 (21.6%)*
	1.5 Other	0 (0.0%)	2 (3.9%)
2.	Process of science is universal	16 (31.4%)	12 (23.5%)
	2.1 Traditional step-by-step method	12 (23.5%)	5 (9.8%)*
	2.2 Unsystematic	4(7.8%)	0 (0.0%)
	2.3 Systematic	0 (0.0%)	1 (2.0%)
	2.4 Observation-interpretation	0 (0.0%)	7 (13.8%)*

^{*}Two students combined their views of traditional step-by-step methods and were cross-coded

TABLE 15 shows that before curriculum implementation a larger number of students (35 students) reported that the process of science is adaptable, while the rest (16 students) reported the opposite idea that the process of science is universal. The descriptions of the process of science from both major categories were reported in the same manner, mainly focused on the traditional step-by-step method. However, no students reported observation and interpretation as steps in the process of science. After curriculum implementation, 18 students indicated that observation and interpretation were part of the process of science, while other views of the process of science slightly dropped in student numbers.

Further descriptions of students' different views of the process of science are:

1) The process of science is universal

One of the two major categories contained responses that reflect student views that the process of science is universal, that is, that all scientists use the same process when they do science. Four subcategories were generated to distinguish student views regarding the process of carrying out scientific investigation.

Before curriculum implementation, 12 students held the misconception that the scientific process is a single/universal procedure, following the traditional step-by-step scientific method-observing, questioning, stating a hypothesis, carrying out experiments, and making conclusions. Some students said that the steps might be slightly different in order but that, basically, the process requires experiments. Other students in this category (4 students) characterized the process as unsystematic, basically a simple method for searching for information from the Internet or books. Similarly, responses in this category were also considered misconceptions.

"They find information on Google. They always do so because it is convenient and easy."

Student #15, before curriculum implementation

After curriculum implementation, fewer students held the two types of misconceptions noted above. The number of students who believed in single, traditional step-by-step method decreased to 5, and no students referred to a single-unsystematic

way of doing science. However, other responses also occurred. Seven students reported that the process of science is based on observation and interpretation. The responses in this category were considered "informed" since they were consistent with contemporary views regarding the nature of science.

"Scientists observe natural phenomena and collect data. After that, they interpret data to determine its meaning. Knowledge is created by this interpretation. All scientists have to go through this process. It is like you are building stairs. You have to start from building the first step."

000000

Student #48, after curriculum implementation

2) The process of science is adaptable

Responses regarding the process of science being adaptable were varied, as were those of students who considered the process of science to be universal. However, responses in this category were slightly different in that although students had in mind what scientists have to do in scientific investigation, they thought the process is flexible and could be adjusted by scientists.

Before curriculum implementation, the largest proportion of students in this category (25 students) considered the process of science to be identical with the traditional step-by-step scientific method. Nine students viewed science as a systematic method but in a different way from the traditional step-by-step method mentioned above. Each student response in this group was different in its details. However, there was a pattern in the responses in that these processes were considered to be systematic, but experimenting was not emphasized.

"What scientists do in scientific investigation is: 1. Become curious about something,

2. Search for information, 3. Arrive at a conclusion. Each scientist may have different
ways to conduct scientific investigation, depending on his aptitude."

Student # 36, before curriculum implementation

"Scientists search for information, analyze, and report it. They do not always follow the steps strictly. They may take immediate action to solve unexpected problems. Sometimes they might do the analyzing before searching for information."

Student #47, before curriculum implementation

Lastly, only 2 students who held the view that the process of science is adaptable referred to a method of doing science unsystematically. These students mentioned the process of searching for information from different sources, simply from the Internet and books.

After the curriculum was implemented, different responses arose. Eleven students described the process of science as observation and interpretation. Meanwhile, the number of those who still viewed the process as the traditional step-by-step method decreased to 22. No unsystematic ways to do science were found in this category.

During the follow-up interviews, 2 students reported their views on the process of science that were different from their responses on the questionnaire. Before curriculum implementation, one student stated his belief that "the process of science is adaptable-unsystematic." During the follow-up interviews, he exhibited his skepticism regarding the process of science. He specifically stated that he didn't know exactly what scientists do. What he was thinking was that scientific investigation had to do with the attempt to find something out. Therefore, there must be a step of searching for information from books or the Internet. Later, other scientists would further the process. He didn't know how exactly, but it possibly involved doing experiments.

"... I was just guessing ... I think it (the process of science) ... was about finding some facts about what we want to know. We have to find out what it looks like. What is its property. So, we search for information from sources, maybe the Internet, but I think from books would be better. Then we may carry out experiments on it. ... I'm not sure if it should always be through experiments, but it would be more trustworthy if we did experiments."

Student #14, before curriculum implementation

4. Students' understanding of the subjectivity of scientific conclusions

To assess students' understanding of the subjectivity inherent in scientific conclusions, students' responses from the TNOS questionnaire were analyzed and described in two ways. The first was through quantitative analysis that described the overall level of students' understanding determined by scoring all the responses on the question about subjectivity in scientific conclusions from the TNOS questionnaire. The second way was via qualitative analysis, which was done by analyzing content as determined by categorizing each meaningful statement from students' responses.

4.1 Levels of students' understanding of the subjectivity of scientific conclusions

Student understandings of the tentativeness of scientific knowledge were scored, ranging from 0 to 5. Details of scoring rubrics and descriptions are presented in chapter 3. The comparisons of levels of students' understanding of the tentativeness of scientific knowledge before and after the curriculum implementation are shown in TABLE 14.

TABLE 14 LEVELS OF STUDENT UNDERSTANDING OF THE SUBJECTIVITY IN SCIENTIFIC CONCLUSIONS BEFORE AND AFTER CURRICULUM IMPLEMENTATION

Score	Description	No. of st	No. of students	
Score		Before	After	
0	Misconception	2 (3.9%)	0 (0.0%)	
1	Limited	5 (9.8%)	0 (0.0%)	
2	Naive	20 (39.2%)	6 (11.8%)	
3	Simple	24 (47.1%)	20 (39.2%)	
4	Competent	0 (0.0%)	20 (39.2%)	
5	Sophisticated	0 (0.0%)	5 (7.8%)	
	Total	51 (100%)	51 (100%)	

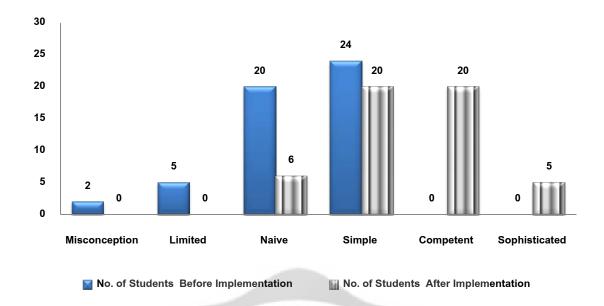


FIGURE 8 LEVELS OF STUDENT UNDERSTANDING OF THE SUBJECTIVITY IN SCIENTIFIC CONCLUSIONS BEFORE AND AFTER CURRICULUM IMPLEMENTATION

As shown in TABLE 14 and FIGURE 8, before the curriculum implementation, all students were aware of the subjectivity in scientific conclusions at "simple" and lower levels. After curriculum implementation, students' understanding improved slightly, as seen by the fact that 25 students understood this aspect of TNOS at "competent" and higher levels. However, 20 students still only understood this aspect of the TNOS at the "simple" level.

After tracking students at the lower levels of TNOS understanding, it was found that, before curriculum implementation, there were 2 students who had misconceptions regarding subjectivity in scientific conclusions. These students indicated that even though two scientists may never see or know each other, their conclusions on the same topic of investigation must be the same.

"The conclusions must be the same. It's like when you measure the salinity of the sea water, the value of the salinity must always be the same."

Student #15, before curriculum implementation

"The conclusions must be the same because both investigators are scientists; therefore their ways of thinking must be the same, or at least similar."

Student #42, before curriculum implementation

In addition, there were 5 students who understood subjectivity at only a "limited" level. These students indicated that different scientists could arrive at different conclusions. However, their explanations on what caused the differences were not clearly stated.

"The conclusions can be different. It depends on a person's thinking."

Student #3, before curriculum implementation

After curriculum implementation, students' understanding of the subjectivity in scientific conclusions improved slightly. The 2 students who had misconceptions improved their understanding to the "simple" level. They came to believe that scientific conclusions obtained by two scientists can be different. However, their explanations were not complete, but in different ways.

Student #15 seemed to succeed in identifying reasons that result in subjectivity in scientific conclusions. However, he did not clearly explain how the indicated reasons did so.

"The conclusions can be different because two scientists may have different kinds of knowledge. One or both of them may get the wrong conclusions. The reasons that make two scientists arrive at different conclusions are 1) their knowledge, 2) the support of people around them, 3) the quality of equipment, 4) the breadth of the topic of investigation. For example, Mendel made conclusions about dominant and recessive genes, while Morgan made conclusions about genes on chromosomes, even though both of them were studying genetics."

Student #15, after curriculum implementation

The explanation given by student #42 seemed to be reasonable in that he focused scientists' ways of thinking as they arrived at conclusions. However, the example

he used for illustrating subjectivity in scientific conclusions was confusing. In addition, he seemed to be confused about technology and scientific knowledge

"It is not necessary for the conclusions to be the same. The process of making conclusions depends on a particular scientist's way of thinking and his experience. For example, two scientists may be studying about alternative energy, Scientist A says that alternative energy is water+sugar+salt, while scientist B says that alternative energy is water+sugar+camphor."

Student #42, after curriculum implementation

As for the 5 students who initially had "limited" understanding, one of them made a notably improvement to the "competent" level, while two of them improved to the "simple" level, and the rest of them slightly improved to the "naïve" level.

The student who improved to the "competent" level made a reasonable explanation of subjectivity caused by scientists' different ways of thinking, but he did not explain how it affects scientists' observations and interpretations. However, the student indicated two very good cases to illustrate subjectivity in scientific conclusions, namely, the theories of the shape of the earth shape and the models of DNA.

"Conclusions can be different. A person has his own way of thinking. Also, a person with more knowledge and experience tends to arrive at better conclusions than does a person with less knowledge and experience. Observation is important. One scientist may say the earth is round, while another one says it is flat. Similarly, one scientist may say that DNA consists of two strands, while another scientist says DNA consists of three strands."

Student #3, after curriculum implementation

4.2 Content of students' understanding of the subjectivity of scientific conclusions

The content of students' responses on subjectivity in scientific conclusions from the TNOS questionnaire were analyzed and put into categories to represent students'

different views on this aspect of TNOS. Finally, the data were grouped into these two major categories: 1) conclusions are always objective, and 2) conclusions can be different. The category "conclusions can be different" is divided into multiple levels of subcategories as presented in TABLE 15.

TABLE 15 STUDENTS' DIFFERENT VIEWS OF SUBJECTIVITY OF SCIENTIFIC CONCLUSIONS BEFORE AND AFTER CURRICULUM IMPLEMENTATION

0.1(0.1)	No. of s	No. of students	
Category/Subcategory	Before	After	
1. Conclusions can be different	49 (96.1%)	51 (100%)	
1.1 Characteristics of individual scientists	39 (76.5%)	45 (88.2%)	
1.1.1 Different knowledge and skill of individual scientists make the conclusions different	32(62.7%)	45 (88.2%)	
1.1.2 Conclusions depend on laws and theories	11 (21.6%)	0 (0.0%)	
accepted by individual scientists	V - 1		
1.2 Investigation	37 (72.5%)	40 (78.4%)	
1.2.1 Conclusions can be different because of different research designs	17 (33.3%)	16 (31.4%)	
1.2.2 Conclusions can be different because of different data sources	27 (54.9%)	21 (41.2%)	
1.2.3 Conclusions can be different because of different variables and hypotheses	10 (19.6%)	8 (15.7%)	
1.2.4 Conclusions can be different because of different ways of interpretation	1 (2.0%)	13 (25.5%)	
1.3 Error and bias causes differences in scientific	4 (7.8%)	11 (21.6%)	
conclusions			
1.4 Differences in scientific conclusions caused by	3 (5.9%)	1 (0.0%)	
chance			
2. Conclusions are always objective	2 (3.9%)	0 (0.0%)	
2.1 The conclusions are always the same			

TABLE 15 shows that, before curriculum implementation, most students (49 students) indicated that conclusions can be different, while very few (2 students) reported that conclusions are always objective. Other, different responses related to causes of the difference were also found. For the most part, students attributed different conclusions to the characteristics of individual scientists (39 students), followed by differences in investigative procedures (37 students), and errors and bias (4 students). Three students attributed differences in conclusions as caused by chance. After curriculum implementation, all students agreed that conclusions can be different. The number of students noting the causes of differences also increased, especially with regard to error and bias, which dramatically increased from 4 to 11 students. Meanwhile, the number of students who reported that differences in scientific conclusions caused by chance slightly decreased to just 1.

Further descriptions on students' views regarding subjectivity in scientific conclusions are as follows:

1) Scientific conclusions are always objective

Before curriculum implementation, there were only 2 students who held the misconception that conclusions are always objective. After the curriculum implementation, no student held this view.

"The conclusions will be the same because scientists' thoughts are always the same."

Student #42, before curriculum implementation

2) Scientific conclusions can be different

Contrary to the first view, before the curriculum implementation, almost all students (49 students) held the contemporary view of the TNOS that scientific conclusions can be different. The number of students with this opinion increased to 51 students after the curriculum was implemented. Nevertheless, the descriptions they gave were different and can be divided into four subcategories: differences caused by characteristics of individual scientists, differences caused by the process of investigation, differences caused by error and bias, and differences caused by chance.

2.1) Characteristics of individual scientists

Students' responses in this subcategory agreed with the idea that two different scientists could reach different conclusions because the conclusions were influenced by different characteristics of the scientists. In this case, the characteristics referred to scientists' perspectives and experiences. In addition, some students emphasized laws and theories that certain scientists accepted. Before curriculum implementation, the 39 students believed that individual characteristics of scientists were the cause of different conclusions. Among this number, 32 stated that different perspectives and experience of individual scientists caused differences in their conclusions, while 11 students emphasized that laws and theories accepted by individual scientists were the cause.

"Scientific conclusions may be different because each scientist has a different way of thinking. Their points of view and perspectives are factors that cause the differences."

Student #5, before curriculum implementation

After curriculum implementation, 45 students fell into the subcategory of characteristics of individual scientists being responsible for different conclusions among scientists. These students referred particularly to such characteristics in terms of perspectives and experiences of individual scientists. No students attributed different scientific conclusions to the effects of laws and theories that scientists accepted.

2.2) Different ways of investigation

The second subcategory includes students' views that two scientists can reach different conclusions if their investigations were done differently. Before curriculum implementation, 37 students selected this subcategory. Among this number, a majority noted differences caused by different data sources (27 students), followed by different research designs (17 students), and different hypotheses (10 students), respectively. In addition, one student attributed different scientific conclusions to different interpretations by different scientists.

"Scientists may reach different conclusions because of the way they use analytical thinking. For example, scientists study fossils of a dinosaur and may arrive at

conclusions differently; one may assume the dinosaur is a carnivore, while another one thinks it is a herbivore. Even though they observe the same bone structure, teeth, and claws, think about the dinosaur differently."

Student #32, before curriculum implementation

After curriculum implementation, the number of students selecting this subcategory increased to 40. In particular, the number of students who attributed different conclusions to different ways of interpretation dramatically increased to 13.

2.3) Differences caused by error and bias

Before curriculum implementation, 4 students indicated that scientists can arrive at different conclusions because of error and bias. After curriculum implementation, the number of students selecting this subcategory increased to 11.

2.4) Differences caused by chance

Before curriculum implementation, 3 students stated that two scientists may or may not reach different conclusions, depending on chance. After curriculum implementation, this number decreased to 1.

"The conclusions may be or may not be the same. It's about chance. There is a 50% chance that the conclusions will be the same and another 50% that they will be different."

Student #47, before curriculum implementation

5. Students' understanding of the role of opinion and imagination in science

Regarding students' understanding of the role of scientists' opinions and imagination in science, students' responses to the TNOS questionnaire were analyzed and described in two ways. The first used quantitative analysis to describe students' overall level of understanding, determined by scoring all responses on the question about this aspect from the TNOS questionnaire. The second used qualitative analysis, which was carried out by analyzing content, determined by categorizing each meaningful statement from students' responses.

5.1 Levels of students' understanding of the role of opinion and imagination in science

Student understandings of the role of scientists' opinion and imagination in science were scored on a scale ranging from 0 to 5. Details of the scoring rubrics and their descriptions are presented in chapter 3. Comparisons of levels of students' understanding of the role of scientists' opinions and imagination in science before and after curriculum implementation are presents in TABLE 16 and FIGURE 9.

TABLE 16 LEVELS OF STUDENT UNDERSTANDING OF THE ROLE OF SCIENTISTS'
OPINIONS AND IMAGINATION IN SCIENCE BEFORE AND AFTER CURRICULUM
IMPLEMENTATION

Saara	Description	No. of s	tudents
Score		Before	After
0	Misconception	15 (29.4%)	8 (15.7%)
1	Limited	9 (17.6%)	0 (0.0%)
2	Naive	15 (29.4%)	9 (17.6%)
3	Simple	7 (13.7%)	15 (29.4%
4	Competent	5 (9.8%)	12 (23.5%
5	Sophisticated	0 (0.0%)	7 (13.7%)
	Total	51 (100%)	51 (100%)

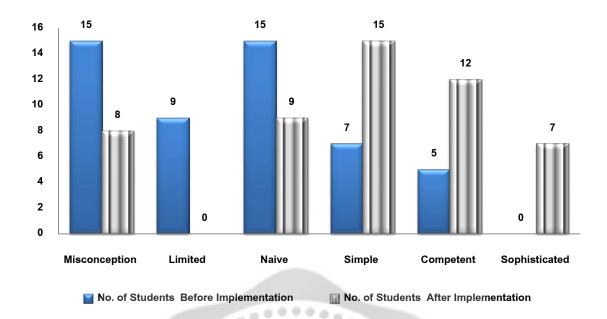


FIGURE 9 LEVELS OF STUDENT UNDERSTANDING OF THE ROLE OF SCIENTISTS'
OPINIONS AND IMAGINATION IN SCIENCE BEFORE AND AFTER CURRICULUM
IMPLEMENTATION

TABLE 16 shows that before curriculum implementation 39 students understood the role of scientists' opinions and imagination in science at lower than "simple" levels. After curriculum implementation, their understanding of this TNOS aspect considerably improved as seen from the fact that 34 students came to understand this aspect of TNOS at "simple" and higher levels. However, there were still 8 students in the "misconception" category.

Before curriculum implementation, 15 students who had the misconception that scientists' opinions and imagination play no part in science.

"I agree [that science relies on only facts and reasoning]. If scientists rely on their opinions and believe in imagination, different scientists will arrive at different conclusions."

Student #23, before curriculum implementation

After curriculum implementation, 9 students from original 15 who initially had a misconception improved their understanding of the role of scientists' opinions and imagination in science. In particular, some made notable improvements and rose to the

"sophisticated" (1 student) and "competent" (2 students) levels. Others increased their understanding to the "simple" (4 students) and "naïve" (2 students) levels. However, 6 students showed no improvements in their understanding.

The student who improved to sophisticate level was able to clearly explain the role of scientists' opinions and imagination in making scientific conclusions, especially with regard to the construction of scientific models.

"I disagree [that science relies only on facts and reasoning]. In reality, no one can completely remove bias from his or her mind. However, scientists need imagination in their work, for instance, when creating models of atoms. In addition, a scientist's opinion determines his conclusion. That's why scientists can have different conclusions. Scientists use their imagination to draw out structures of many things, for example, the structure of the earth and the solar system. In the past, they did not have a spaceship to use. They had to create models of these things, just as with the models of atoms. Because each scientist had different ideas, we had different models of atoms that we study today."

Student #23, after curriculum implementation

In contrast, students who were considered "naïve" did not do well in explaining how scientists' opinions and imagination play a role in science. For example, Student #15's response was confusing. However, it can be interpreted to mean that the role of scientists' (Einstein, in this case) opinions and imagination is to be used in the process of setting a topic of investigation.

"I disagree [that science relies on only facts and reasoning] because Einstein was accused of being stupid for getting too deep in his imagination. Einstein used imagination when he set a topic of investigation on the study about atomic bombs."

Student #15, after curriculum implementation

Besides improvements of students at lower levels, other interesting changes of students' levels of understanding were found. For example, two students dropped from "naïve" and "limited" levels to "misconception."

Before curriculum implementation, Student #24's understanding was considered "limited" from his response that was very short and did not provide any further explanation of how scientists' opinions and imagination affect their scientific conclusions.

"I disagree [that science relies on only facts and reasoning] because sometimes scientists use their opinions and imagination in their work."

Student #24, before curriculum implementation

Similarly, Student #19's understanding was considered "naïve" given his explanation that referred to the use of scientists' opinions and imagination in producing artifacts rather than in the process of scientific investigation.

"I disagree [that science relies on only facts and reasoning] because opinions and imagination are important for creating artifacts that are different but usable."

Student #19, before curriculum implementation

After curriculum implementation, both students replied that scientists' opinions and imagination plays no part in science but they nevertheless cause bias in scientific investigation.

"I agree [that science relies on only facts and reasoning]. If scientists use their opinions and imagination, they will cause bias in their work."

Student #19, after curriculum implementation

"I agree [that science relies on only facts and reasoning]. Sometimes, data or conclusions obtained from the source may differ from scientists' opinions."

Student #24, after curriculum implementation

5.2 Content of students' understanding of the role of opinion and imagination in science

The contents of students' responses on the role of scientists' opinions and imagination in science on the TNOS questionnaire were analyzed and put into categories to represent students' different views on this TNOS question. Finally, the data were grouped into two major categories: 1) opinion and imagination play no part in science, and 2)

science involves opinion and imagination. This category of opinion and imagination is divided into subcategories, as presented in TABLE 17.

TABLE 17 STUDENTS' DIFFERENT VIEWS OF THE ROLE OF SCIENTISTS' OPINIONS
AND IMAGINATION IN SCIENCE BEFORE AND AFTER CURRICULUM
IMPLEMENTATION

Cata want Cula acta want	No. of st	No. of students	
Category/Subcategory	Before	After	
Science involves opinion and imagination	36 (70.6%)	43 (84.3%)	
1.1 Opinion and imagination in investigation	18 (35.3%)	25 (49.0%)	
1.1.1 Opinion and imagination are used for	14 (27.5%)	13 (25.5%)	
questioning and setting research topics			
1.1.2 Opinion and imagination are used for setting	9 (17.6%)	7 (13.7%)	
hypotheses	1:1		
1.1.3 Opinion and imagination are used for	0 (0.0%)	9 (17.6%)	
interpretation	7:1		
1.1.4 Opinion and imagination are used for	0 (0.0%)	3 (5.9%)	
designing investigations	3		
1.1.5 Opinion and imagination are used for refuting	0 (0.0%)	3 (5.9%)	
old knowledge			
1.2 Opinion and imagination are used for Creating	10 (19.6%)	11 (21.6%)	
artifacts			
1.3 Opinion and imagination are used for explaining	5 (9.8%)	8 (15.7%)	
invisible entities			
1.4 Opinion and imagination cause bias	8 (15.7%)	19 (37.3%)	
2. Opinion and imagination play no part in science			
2.1 Science does not involve opinion and	15 (29.4%)	8 (15.7%)	
imagination			

TABLE 17 shows that, before curriculum implementation, large numbers of students (36 students) indicated that science involves opinion and imagination while the rest

(15 students) stated the opposite view that opinion and imagination play no part in science. After curriculum implementation, the number of students who indicated that science involves opinion and imagination increased to 43. In contrast, the number of students who indicated that opinion and imagination play no part in science notably decreased to 8.

Further descriptions of students' views of the role of scientists' opinions and imagination in science are as follows:

1) Scientists' opinions and imagination play no part in science

Before curriculum implementation, 15 students held the misconception that science relies only on reasoning and facts. In other words, scientists' opinions and imagination have no role in science. However, the number of students holding this view dramatically decreased to 8 after curriculum implementation.

2) Science involves opinion and imagination

Contrary to the first view, before curriculum implementation, many students held the contemporary view of TNOS that science involves scientists' opinions and imagination. In addition, many students (18 students) thought that the process of investigation involves scientists' opinions and imagination, particularly with regard to questioning and setting a research topic (14 students) and setting hypotheses (9 students). Other views on the role of opinions and imagination were also found. Ten students stated that scientists' opinions and imagination were used for creating artifacts, 8 noted the negative role of opinion and imagination in causing bias, and 5 noted its role in explaining invisible entities.

After curriculum implementation, more processes of science that involve scientists' opinions and imagination were identified. Nine students indicated that scientists' opinions and imagination are used for interpretation, 3 indicated that they are used for designing investigations, and 3 specified that scientists' opinions and imagination are used for generating new ideas that will refute old knowledge. In addition, the number of students who thought that scientists' opinions and imagination cause bias increased to 19, and the number of students who thought scientists' opinions and imagination were used in explaining invisible entities increased to 8. The common examples cited by students holding

this view were models of atoms, the origin of the earth, and Watson and Crick's model of DNA structure.

6. Students' understanding of the relationship between science and society

To assess students' understanding of the relationship between science and society, their responses from the TNOS questionnaire were analyzed and described in two ways. The first involved quantitative analysis, which described students' overall levels of understanding determined by scoring all responses on the question about the relationship between science and society. The second used qualitative analysis, which analyzed content determined by categorizing each meaningful statement from students' responses.

6.1 Levels of students' understanding of the relationship between science and society

Students' understanding of the relationship between science and society were scored on a scale ranging from 0 to 5. Details of scoring rubrics and their descriptions are presented in chapter 3. Comparisons of levels of students' understanding of the relationship between science and society before and after curriculum implementation are presented in TABLE 18 and FIGURE 10.

TABLE 18 LEVELS OF STUDENT UNDERSTANDING OF THE RELATIONSHIP
BETWEEN SCIENCE AND SOCIETY BEFORE AND AFTER CURRICULUM
IMPLEMENTATION

Score	Description	Numbers	
	Description	Before	After
0	Misconception	0 (0.0%)	0 (0.0%)
1	Limited	10 (19.6%)	0 (0.0%)
2	Naive	27 (52.9%)	4 (7.8%)
3	Simple	12 (23.5%)	10 (19.6%)
4	Competent	2 (3.9%)	19 (37.3%)
5	Sophisticated	0 (0.0%)	18 (35.3%)
	Total	51 (100%)	51 (100%)

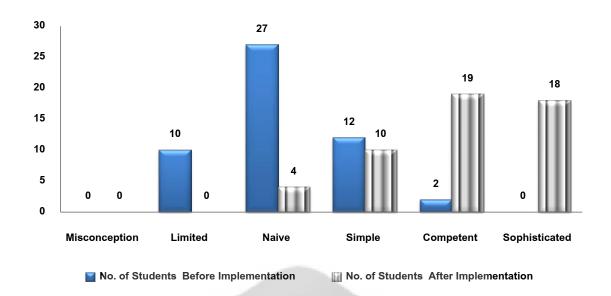


FIGURE 10 LEVELS OF STUDENT UNDERSTANDING OF THE RELATIONSHIP BETWEEN SCIENCE AND SOCIETY BEFORE AND AFTER CURRICULUM IMPLEMENTATION

TABLE 18 and FIGURE 10 show that, before curriculum implementation, 37 students understood the relationship between science and society at lower than "simple" levels. After curriculum implementation, their understanding notably improved, as seen by the fact that 37 students understood the relationship between science and society at higher than "simple" levels. To be exact, 18 students understood this TNOS aspect at the "sophisticated" level, and 19 students understood it at the "competent" level.

After tracking students with a lower understanding of TNOS, it was found that before curriculum implementation all students indicated their views appropriately, namely, that science and society impact each other. However, 10 students were considered to have only a "limited" understanding because they gave only a common, broad explanation about the relationship between science and society. Sometimes, their explanations were confusing.

"I agree [that science and society impact each other] because societies with different surroundings will cause different things."

Student #5, before curriculum implementation

After curriculum implementation, students improved their understanding of the relationship between science and society. Their explanations about the relationship were more specific and understandable. Some students described the relationship in terms of interaction between science and society instead of describing only one-sided impacts, which made their responses seem more "sophisticate."

"I agree [that science and society impacts on each other]. A scientific investigation cannot succeed if it fails to be accepted by society. Science impacts society in the way that it helps improve communities' quality of life as well as enhancing the quality of the environment and allows us to live conveniently from the development of facilities we use. Society impacts science in the way that it opposes science that is considered immoral or is thought to affect people in the society, for example, the research on human cloning."

Student #5, after curriculum implementation

6.2 Content of students' understanding of the relationship between science and society

۰

0

The contents of students' responses on the relationship between science and society from TNOS questionnaire were analyzed and put into categories to represent students' different views on this TNOS question. Finally, the categories were grouped into three major categories: 1) science's impacts on society, 2) society's impacts on science, and 3) other ambiguous views. The major categories were divided into multiple levels of subcategories, as presented in TABLE 19.

TABLE 19 STUDENTS' DIFFERENT VIEWS OF THE RELATIONSHIP BETWEEN
SCIENCE AND SOCIETY BEFORE AND AFTER CURRICULUM IMPLEMENTATION

Catagomy/Subaatagomy	No. of students	
Category/Subcategory	Before	After
1. Science's impacts on society	32 (62.8%)	35 (68.6%)
1.1 Uses of technology impacts society	26 (51.0%)	24 (47.1%)
1.2 Science educates people	8 (15.7%)	7 (13.7%)
1.3 Science causes contradiction	4 (7.8%)	6 (11.8%)
1.4 Scientists influence social concerns	2 (3.9%)	5 (9.8%)
2. Society's impacts on science	5 (9.8%)	35 (68.6%)
2.1 Society drives the direction of science	3 (5.9%)	14 (27.5%)
2.2 Society funds science	2 (3.9%)	3 (5.9%)
2.3 Science is a social construct	1 (2.0%)	28 (54.9%)
3. Other ambiguous views	12 (23.5%)	0 (0.0%)
3.1 Environment impacts society	8 (15.7%)	0 (0.0%)
3.2 Science relates to life and society	4 (7.8%)	0 (0.0%)

TABLE 19 shows that, before curriculum implementation, most (32) students agreed that science impacts society, while 12 students selected "other ambiguous views," and 5 selected "society impacts science." After the curriculum was implemented, there was a notable increase (from 5 to 35) in the number of students who felt that society impacts science. No students selected "other ambiguous views," while the number of students who agreed that science impacts society increased slightly, from 32 to 35.

Further descriptions of students' views on relationship between science and society are as follows:

1) Science impacts society

Before curriculum implementation, many students saw a relationship between science and society in the way that science impacts society. Thirty-two students did not distinguish between the concepts of science and technology and referred to uses of technology as a result of the impact of science on society. Meanwhile, 8 students stated that science helps educate people in the society. To these students, scientific knowledge brings facts and explanations for phenomena that people are curious about and prevents people from being credulous.

"Scientists use scientific knowledge to explain things happening in the world. For example, people in some places may believe in ghosts or supernatural power, but scientists help explain what really happens."

Student #32, before curriculum implementation

On the other hand, 4 students stated that science causes contradictions, especially with regard to conflicts with religion and social beliefs, which in turn could cause social problems.

"Sometimes, scientific knowledge contradicts religion and beliefs. For example, the idea that the sun is the center of the universe once contradicted to Christian beliefs that God is the creator of the earth and that earth is the center of the universe."

Student #36, before curriculum implementation

After curriculum implementation, the number of students who thought that science impacts society increased slightly, to 35. There was no major change in student numbers in the subcategories.

2) Society impacts science

Before curriculum implementation, only 5 students referred to the relationship between science and society in terms of the way that society impacts science. After curriculum implementation, the number of students who responded to this major category increased to 35. Their responses indicated the impacts in various ways, first of all,

in the ways that society drives the direction of science. Students who selected this subcategory believed that the development of scientific investigations is directed by social requirements, that is, what social needs will be served by science.

"Social needs affect what is researched in science. For example, during World War II, everybody needed effective and good quality weapons. Science at that time focused on knowledge to be used in the military, like biological weapons, poisonous gas, and atomic bombs. . . . it can be seen that in some periods of history, science directs society."

Student #13, after curriculum implementation

Secondly, some students reported that science is a social construct, that science was constructed and accepted by society. This idea is related to the acceptance of new knowledge that can be recognized or ignored by society. Therefore, development of particular science projects will not occur without social support.

"Society and social beliefs influence scientific knowledge. Sometimes knowledge can be ignored or opposed by society if it is considered to be immoral, for example, research on human cloning that cannot be done."

Student #23, after curriculum implementation

Lastly, students also indicated that there were implications in the way that society financially supports science.

3) Other ambiguous views

Some students' responses did not clearly state the relationship between science and technology. Before curriculum implementation, there were 12 students who selected "ambiguous views." Eight students showed that they viewed science as part of the environment and explained the impacts of changes in the environment on society rather than explaining the impacts of science.

"Water is a part of science. Without water, people will have to fight with each other to get water to use and it will cause social turmoil."

Student #8, before curriculum implementation

Similarly, 8 students claimed that science relates to daily life without giving further explanations.

"Science is the principle of the society. Scientific knowledge benefits society"

Student #21, before curriculum implementation

After curriculum implementation, no ambiguous views were found.

Section 3: What changes occur in students' decision making on science-based dilemmas after the curriculum implementation?

In order to explore how students use ideas relating to TNOS when making decisions on science—based dilemmas, three different scenarios related to modern technology in genetics were given to students: 1) GM papaya, 2) gene therapy, and 3) GM mosquito and malaria. These scenarios simulated information, specifically positive information regarding technology that students might face in daily life or glean from public media. The results of students' decision making regarding science—based dilemmas were analyzed and described in two different ways. The first used quantitative analysis to describe students' overall level of decision making determined by scoring their responses on each scenario on the decision-making questionnaire. The second involved qualitative analysis, which analyzed content to describe what information students were concerned with when making decisions on science—based dilemmas.

1. Levels of students' decision making

In this research, levels of student decision making were judged according to numbers of TNOS dimensions that students connected to their decision, as described in detail in chapter 3. The level of student decision making is ranged in 5 levels: 1) no other concerns, 2) non–TNOS related concerns, 3) one dimension of TNOS–related concerns, 4) two dimensions of TNOS–related concerns, and 5) three dimensions of TNOS–related concerns. Initially, students' responses on each scenario were independently assessed for their level of decision making. Later, the summation of numbers of students at each level

from each different scenario was calculated to provide an overview of students' decision makings on science-based dilemmas

The level of students' decision making on science-based dilemmas is shown in TABLE 20.

TABLE 20 LEVELS OF STUDENTS' DECISION MAKING DIVIDED INTO THREE SCENARIOS

Scenarios	Level 1		Level 2		Level 3		Level 4		Level 5	
	Before	After	Before	After	Before	After	Before	After	Before	After
GM papaya	22	0	11	1	16	28	2	19	0	3
(N =51)	(43.1%)	(0.0%)	(21.6%)	(2.0%)	(31.4%)	(54.9%)	(3.9%)	(37.3%)	(0.0%)	(5.9%)
Gene Therapy	5	1	15	8 1	31	31	0	11	0	0
(N =51)	(9.8%)	(2.0%)	(29.4%)	(15.7%)	(60.8%)	(60.8%)	(0.0%)	(21.6%)	(0.0%)	(0.0%)
GM mosquito	12	2	17	5	18	22	4	20	0	2
(N =51)	(23.5%)	(3.9%)	(33.3%)	(9.8%)	(35.3%)	43.1%)	(7.8%)	(39.2%)	(0.0%)	(3.9%)
Total No. of		0 1	/ # _ l			_ %	4 .			
responses	39	3	43	14	65	81	6	50	0	5
(N =153)	(25.5%)	(2.0%)	(28.1%)	(9.2%)	(42.5%)	(52.9%)	(3.9%)	(32.7%)	(0.0%)	(3.3%)

TABLE 22 shows that, before curriculum implementation, large numbers of students' responses (65 responses out of a total of 153) were considered level 3 decisions. That is, the responses showed that students were concerned with one TNOS dimension when making decisions. However, many of the responses did not involve TNOS dimensions, as seen from many responses that were considered level 2 (43 out of 153) and level 1 (39 out of 153), while responses considered level 4 decisions were rarely founded (6 out of 153). In addition none of the responses was considered a level 5 decision. After curriculum implementation, the largest number of responses (81 out of 153) were still considered as level 3 decisions. However, the results showed a notable improvement in students' decision making as seen by the higher numbers of responses (50 out of 153) that were considered level 4 decisions. On the contrary, numbers of responses that were considered at level 1 and level 2 dramatically decreased to 3 and 14 responses,

respectively. In addition, responses that were considered level 5 decisions were hardly found at all.

The details from students that were tracked revealed that, before curriculum implementation, there were 9 students who did not concern themselves with information related to TNOS when making decisions on all three scenarios given in the questionnaire. These students' decision making had combinations of level 1 and level 2 decisions, depending on the scenario they responded to. However, there was one student who made only level 1 decisions in all scenarios.

Student #24 reported no concern with any other information she should obtain when making decisions. Her responses indicated that she believed the one-sided information given in the scenario. To be exact, she reported the reasons of her decisions by repeating information given from the scenarios.

"I will have GM papaya because the scientist who developed GM papaya had checked that it had the same nutritional value as the natural ones and that it is safe. The information that is important to me for making the decision is the assurance given by the scientist. The information given in the scenario is enough for me to make a decision."

Student #24, before curriculum implementation

After curriculum implementation, all 9 students showed improvement in their levels of decision making. In particular, Student #24 who initially reported level 1 on all three scenarios dramatically improved her decisions to higher levels, especially in the GM papaya scenario, in which she reported a level 4 decision by referring to information that related to individual scientists and the epistemological dimensions of TNOS.

"I will not have GM papaya because we still don't know what may happen in the long run if we eat a lot of GM products. The information that is important to me when making decisions is that there should be confirmations from experts. Also, there should be information about what will happen if we eat large amounts of GM products."

Student #24, after curriculum implementation

Other students slightly increased the level of their decisions as well, primarily to levels 3 and 4. However, there was one student who did not show any noticeable improvement in his decision. Student #12 maintained his level of decision making at level 2 in the gene therapy scenario and the GM and mosquito scenario. The only scenario in which he showed any improvement was in the GM papaya one, where he improved from level 1 to level 3 after curriculum implementation.

2. Content of students' decision making on science-based dilemmas

The content of students' responses regarding decision making on the science—based dilemmas questionnaire was analyzed and put into categories to represent different types of information that students were concerned with when making decisions in each scenario given in the questionnaire. The categories were later grouped into four major categories:

- 1) Information related to individual scientists
- 2) Information related to epistemology
- 3) Information related to sociocultural context
- 4) Information unrelated to TNOS.

The information that students took into account when making decisions on each scenario is presented in TABLE 21 and FIGURE 11.

TABLE 21 INFORMATION STUDENT CONCERN WHEN MAKING DECISIONS DIVIDED INTO THREE SCENARIOS

TNOS	Information Affacting Desicion	No. of Students								
	Information Affecting Decision	GM papaya		Gene therapy		GM mosquito		Total		
Dimensions	Making	Before	After	Before	After	Before	After	Before	Afte	
Individual scientist	Turnel continues of the continues	3	4	1	5	0	2	4	11	
	Trustworthiness of the researcher	(5.9%)	(7.8%)	(2.0%)	(9.8%)	(0.0%)	(3.9%)	(2.6%)	(7.2%	
	Third party verification	2794	20	0	8	0	6	7	41	
	Third party verification	(13.7%)	(39.2%)	(0.0%)	(15.7%)	(0.0%)	(11.8%)	(7.6%)	(26.89	
	- II - S	1	2	0	2	0	2	1	6	
	Experts' confirmation	(2.0%)	(3.9%)	(0.0%)	(3.9%)	(0.0%)	(3.9%)	(0.7%)	(3.9%	
Epistemology	Unknown effects of scientific	7	32	25	31	11	26	43	89	
	knowledge	(13.7%)	(62.7%)	(49.0%)	(60.8%)	(21.6%)	(51.0%)	(28.1%)	(58.2	
	W:3 %.	6	21	10	17	9	28	25	66	
	Requirement of more research	(11.8%)	(41.2%)	(19.6%)	(33.3%)	(17.7%)	(54.95)	(16.3%)	(43.1	
Sociocultural context		0	5	0	0	6	16	6	21	
	Social concerns	(0.0%)	(9.8%)	(0.0%)	(0.0%)	(11.8%)	(31.4%)	(3.9%)	(13.7	
	Laws and regulations	0	W7.	0	0	0	0	0	1	
	Laws and regulations	(0.0%)	(2.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.7%	
Unrelated to	D 1 1 1	38	31	29	25	15	16	82	72	
	Product quality	(74.5%)	(60.8%)	(56.9%)	(49.0%)	(29.4%)	(31.4%)	(53.6%)	(47.19	
	A and audio information	8	7	22	16	12	7	42	30	
	Academic information	(15.7%)	(13.7%)	(43.1%)	(31.4%)	(23.5%)	(13.7%)	(27.5%)	(19.6	
	Missallonagus	10	16	3	20	12	19	25	55	
	Miscellaneous	(19.6%)	(31.4%)	(5.9%)	(39.2%)	(23.5%)	(37.3%)	(16.3%)	(35.99	

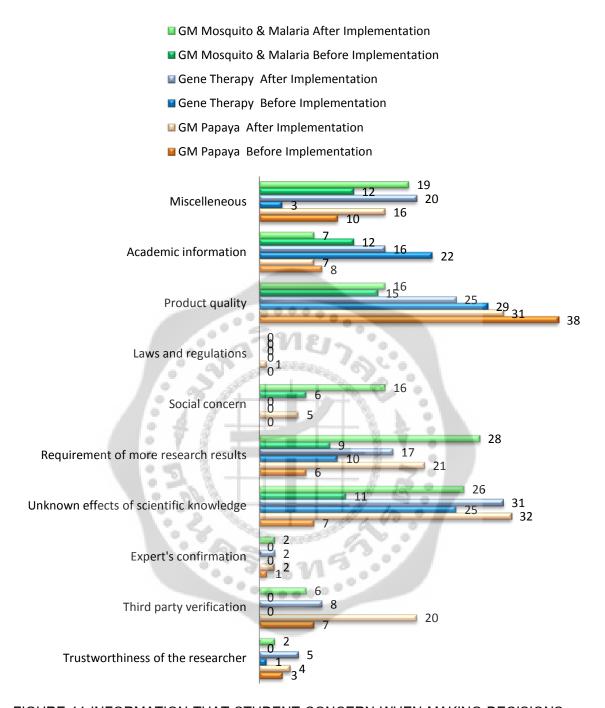


FIGURE 11 INFORMATION THAT STUDENT CONCERN WHEN MAKING DECISIONS

DIVIDED INTO THREE SCENARIOS

TABLE 21 and FIGURE 11 show that, before curriculum implementation, the information that students were most concerned with when making decisions on all scenarios was for the most part not related to TNOS. Information that was of highest concern was related to product quality, especially in the GM papaya scenario (38 students out of 51).

Some concerns related to TNOS were only slightly evident. The information related to TNOS that students were most concerned with were the unknown effects of scientific knowledge, especially when they made decisions regarding the gene therapy scenario (25 students out of 51). Other information related to TNOS that concerned noticeable numbers of students was the requirement for more research, which was indicated in the gene therapy scenario (10 students), the GM mosquito and malaria scenario (9 students), and the GM papaya scenario (6 students). Other information related to TNOS, namely, the trustworthiness of the researcher, third party verification, experts' confirmation, and social concerns, was only slightly evident.

It can be seen that after curriculum implementation the major concerns of students were still related to product quality. However, the number of students who indicated these concerns decreased slightly, as seen in the GM papaya scenario, in which the number dropped from 38 to 31. However, student numbers regarding increased concerns about scientific information related to TNOS notably improved, especially with regard to unknown effects of scientific knowledge (an increase from 7 to 32 students in the GM papaya scenario, 11 to 26 students in the GM mosquito and malaria scenario, and 25 to 31 students in the gene therapy scenario). Similarly, the numbers of students indicating their concerns regarding the third party verification also dramatically increased, especially in the GM papaya scenario (an increase from 7 to 20 students) and the gene therapy and GM mosquito and malaria scenarios (increases from 0 to 8 and 0 to 6 students, respectively). In addition, the numbers of students indicating their concerns about the trustworthiness of the researcher, experts' confirmation, social concerns, and laws and regulations all increased.

Details of students' decision making in each scenario are described in detail below.

1) GM papaya scenario

Before curriculum implementation, 38 students noted factors that affected their decision making on product quality, especially the taste of GM papaya, price, and nutrition. Only slightly mentioned was other academic information, for instance, the process of

genetic modification, and miscellaneous factors, for example, defects in GM papayas, the place where they would be sold, and advertisements.

There were not many students who referred to TNOS when making decisions before the curriculum implementation. Some concerns related to the TNOS dimension of the epistemology of science. Seven students thought of results that were not yet known, particularly the possibility that consuming GM papayas may affect human health in the long run. This concern led some students to consider the necessity of having more research related to GM papaya, particularly long-term research and research focusing specifically on the toxicity of GM papaya.

Some students also indicated their concern relating to individual scientists. Seven students thought they should be provided information regarding the verification by a third party that GM papaya was toxic free. However, the information they mentioned was in the form of a certificate of safety from a trustworthy resource, for example, the Food and Drug Administration (FDA).

After curriculum implementation, large numbers of students (31 students) still concerned the product quality. However, the number of students who cited related TNOS concerns increased. Thirty—two students affirmed their concerns related to the epistemology of science, especially regarding the unknown long—time effects from growing and consuming GM papaya. In addition, 21 students cited a requirement for more research to confirm the safety of GM papaya.

Similarly, the number of students concerned with the dimension of individual scientists increased, and 20 students stated the need for a requirement for third party verification. Some students emphasized that the verification should be made by several international organizations and that none of these organizations should be involved in trading GM products.

2) Gene therapy scenario

Different from the other two decision making scenarios, factors affecting student decision making regarding statistics and percentages of patients recovered from cancer were interpreted as "product quality" rather than factors related to the epistemology

of science. This interpretation was made considering the fact that the information provided in this scenario consisted of the doctors' mentioning that "65-70% patients responded well to the therapy." This can be interpreted to mean that although students referred to statistics in the experiment, they were concerned with the quality and effectiveness of the therapy, rather than with the trustworthiness of the research.

Before curriculum implementation, many students took into account factors related to TNOS, specifically with regard to epistemology. Twenty-five students were concerned that results of medical treatment by gene therapy were unknown whereas 10 students mentioned the need for more research in order to make the doctor's claim more trustworthy. However, requirements for more research were not clearly specified, and students for the most part simply asked for "more details on recovered or unrecovered patients" rather than identifying what exactly doctors or researchers should do to confirm their claims regarding the effectiveness of gene therapy.

By comparison, 29 students were concerned about product quality (cost of therapy, percentage of those recovering, and length of time for recovery) when making decisions regarding gene therapy. Concerns regarding academic information were also found (for 22 students), especially for the process of gene therapy treatment.

After curriculum implementation, more students indicated their concerns related to TNOS dimensions, particularly with regard to epistemology. The number of students concerned about the unknown results of gene therapy increased to 31, and the number of students who cited the need for more research increased to 17. In addition, students were more specific about the types of research they mentioned. For instance, they wanted to know the results from gene therapy experiments in animals, case studies on each gene therapy patient, and how specialists could confirm that the recovery was a result of gene therapy.

The concerns related to the dimension of individual scientists increased as well. Eight students stated their concern about third-party verification, especially whether a particular treatment was universally accepted by trustworthy institutes. Five students

mentioned factors that affected their decisions regarding the skill and experience of gene therapy specialists, while 2 students stated the need for an expert's confirmation.

3) GM mosquito and malaria scenario

Before curriculum implementation, some students were concerned with non-related TNOS factors when making decisions. Fifteen students considered product quality, i.e., the effectiveness and cost of using GM mosquitoes to eliminate malaria. Twelve students thought of miscellaneous factors, particularly, disturbances that may result from having more mosquitoes in the area. Other details, for instance, the process of creating GM mosquitoes and time required for breeding mosquitoes, were also mentioned by 12 students. By comparison, there were similar numbers of students concerning factors related to TNOS, particularly with regard to epistemology, when making decisions—11 students were concerned about the unknown effects from creating GM mosquitoes whereas 9 students mentioned the need for more research. Meanwhile, 6 students were concerned about the sociocultural context in terms of possible effects on the environment and people in the community.

After curriculum implementation, the numbers of students increased on all decision-making factors, especially for those related to epistemology. The number of students who stated the need for more research dramatically increased to 28. Similarly, the number of those concerned about the unknown effects from creating GM mosquitoes rose to 26.

Likewise, the number of students concerned with the sociocultural context, particularly with regard to possible effects on the environment and people in the community increased to 6, while the numbers of students concerned with the dimension of individual scientists and the need for third-party verification, trustworthiness of the researcher, and experts' confirmation rose to 6, 2, and 2 students, respectively.

Section 4: Do students who learn under the integrated nature of science curriculum differ in their understanding of genetics from students who learn in the conventional curriculum?

Student achievement in terms of their understanding of genetics was examined with the assumption that, when studying in a curriculum with multiple foci on history, the nature of science, and science content, student achievement in science content may be lower than that of students who learn in a curriculum that focuses on only science content. Student achievement in understanding genetics was examined in two ways: 1) comparing before and after scores within a group of students who learned with the integrated nature of science curriculum, using t-test statistics, and 2) comparing achievement between students in a class that learned with the integrated nature of science curriculum and students who learned using a conventional curriculum, using ANCOVA by having the pretest scores as covariates.

TABLE 22 COMPARISON OF SCORES OF STUDENT ACHIEVEMENT IN GENETICS
UNDERSTANDING BEFORE AND AFTER CURRICULUM IMPLEMENTATION

Test	N	df	Total scores	М	S.D.	т	р
Before curriculum implementation	51	50	30	24.05	2.86	12.87	0.000
After curriculum implementation	51			16.20	4.40	**	

^{**}p<0.01

TABLE 22 shows that the mean student achievement in genetics understanding from after curriculum implementation (24.05) was higher than before implementation (16.20) at the 0.01 level of significance.

TABLE 23 COMPARISON OF THE INTEGRATED NATURE OF SCIENCE CURRICULUM
CLASS AND THE CONVENTIONAL CURRICULUM CLASS SCORES IN
ACHIEVEMENT OF GENETICS UNDERSTANDING

Source	N	df	М	ss	MS	F	р
Genetics understanding							
- TNOS curriculum class	51	1	24.06	1092.622	1092.622	89.034**	0.000
- Traditional curriculum class	45		14.20				

^{**} p < 0.01

TABLE 23 shows the mean scores reflecting students' understanding of genetics. It was found that the mean scores of the TNOS curriculum class and the traditional curriculum class were 24.06 and 14.20, respectively. The ANCOVA results of students' genetics understanding indicated that the mean scores were significantly different at the 0.01 level. Therefore, the student genetics understanding in the TNOS curriculum class was significantly higher.

Section 5: Examples of students' cases

In this section, three students' experiences were described to illustrate the effect of the integrated curriculum on their learning.

1. The case of Student #14

Student #14 had a good background in science as seen by his grade of 4 (excellent) on the basic science course on his report. However, his background in genetics understanding was below average when compared to his classmates. His background showed a lack of understanding of TNOS, similar to other students in the class. Before curriculum implementation, the aspect of TNOS in which he had the highest level of understanding was the tentativeness of scientific knowledge (3–simple), followed by the subjectivity of scientific conclusions (2–naive), the role of opinion and imagination in science (2–naive), the relationship between science and society (1–limit), and the process of science (0–misconception), respectively.

Student #14 reported his concern about information related to TNOS dimensions on two out of three scenarios, namely, GM papaya and gene therapy. However, his decision making in both scenarios was at level 3, showing concern for only one dimension of TNOS. He was skeptical about the effectiveness of the technology presented in the scenarios. In the GM papaya scenario, he was skeptical that the virus that causes the disease in papayas could be used to develop disease-free and safe papaya. He was concerned that down the line the papaya consumer may be harmed by the virus in the future. His explanation, although inaccurate, shows that he was concerned about the unknown effects of GM papaya in the long run. He also suspected that someday GM technology may not as highly regarded as it is today. This relates to the epistemological dimension of TNOS.

"I will eat GM papaya because it is guaranteed to be safe. However, it should be kept in mind that because the virus can develop itself, GM papaya may not be 100% safe in the future. There should also be studies about the effects, both good and bad, about GM papaya so that informed decisions can be made."

Student #14, before curriculum implementation

On the other hand, Student #14 simply decided to support the release of GM mosquitoes in his community, trusting that doing so worked well when scientists did the experiment.

"I support the release of GM mosquitoes in my community since experiments were a success."

Student #14, before curriculum implementation

After curriculum implementation, Student #14 increased his understanding of genetics to a score of 25, which was slightly higher than the average. He also increased his levels of understanding of all aspects of TNOS, especially regarding the process of science (3–simple), followed by the relationship between science and society (3–simple), the subjectivity of scientific conclusions (2–naïve), the tentativeness of scientific knowledge

(4-competent), and the role of scientists' opinions and imagination in science (3-simple), respectively.

Student #14 increased his level of decision making as well, especially in the GM mosquito and GM papaya scenarios, which increased to level 4, which means that he took into account information related to two dimensions of TNOS when making decisions. His responses regarding the GM mosquito indicate that he worried about possible negative social effects. He also noted that he needed more research to confirm the effectiveness of the GM mosquito program. These two concerns are related, respectively, to the sociocultural context and epistemology dimensions of TNOS.

"I would not support the release of the GM mosquito. If there are any negative effects caused by the GM mosquito, the whole community and beyond would be affected. There should be more information about experiments involving the GM mosquito on a variety of organisms in order to make it more trustworthy."

Student #14, after curriculum implementation

2. The case of student #23

Similar to many of her classmates, Student #23 had a solid background in science as seen by her grade of 4 (excellent) that she received on the basic science course she took during the previous academic year. Her pretest score on genetics understanding was 16, which was the average. However, her background on TNOS understanding was lower than other students in the class. Her responses on the TNOS questionnaire indicated misconceptions on two of TNOS aspects, namely, the tentativeness of scientific knowledge and the role of opinion and imagination in science. Her responses indicate that she felt that scientific knowledge is absolute and never changes and that scientists' opinions and imagination play no part in science.

"Scientific laws and theories cannot change because they come from numerous repetitions of experiments by several scientists. They are practical and can be proved."

"I agree [that science relies only on facts and reasoning]. If scientists rely on their opinions and their imagination, different scientists will get different results."

Student #23, before curriculum implementation

Her inadequate understanding of TNOS is reflected in her decision making. Student #23 uncritically believed the information given in the GM papaya and GM mosquito scenarios. The only scenario in which she showed any consideration of information related to TNOS was gene therapy, but this scenario already noted the uncertainty of gene therapy results, namely, that it had only a 60–70% success rate in curing cancer.

"I will eat GM papaya. It was already stated in the scenario that GM papaya is resistant to virus and the nutrition is the same as that in regular papayas. This information is enough for making a decision."

"The information given to the patient was not enough for making a decision. It did not indicate side effects and drawbacks of the therapy. There need to be results provided on the patients who have received gene therapy."

"I will support the release of GM mosquitoes so that we can solve the problem of the disease transmission. The given information from the scenario is enough for me to make a decision."

Student #23, before curriculum implementation

After curriculum implementation, Student #23 increased her score on the genetics understanding post–test to 24, which was the average. She did not change her level of TNOS understanding in some aspects. However, she notably increased her levels of TNOS understanding in the aspects that she previously held misconceptions on. She competently explained the tentativeness of scientific knowledge and gave a sophisticated explanation of the role of scientists' opinions and imagination in science.

"Laws and theories can change. When the society changes, people's beliefs change as well, and so does the social support that affects the change. When the time period changes, scientists will develop more knowledge on a certain thing, which causes changes in the previous theories. For example, there is Mendel's ratio. He said that it [genetic inheritance] will always be a 3:1 ratio but there are exceptions to the ratio such as the breeding between a red flower and a white flower that can result in a pink flower, not 3:1 red:white."

Student #23, before curriculum implementation

"I disagree [that science relies only on facts and reasoning]. In reality, no one can completely remove bias from his or her mind. However, scientists need imagination in their work, for instance, for creating models of atoms. In addition, a scientist's opinion determines his conclusion. That's why scientists can have different conclusions. Scientists use their imagination to draw out structures of many things, for example, the structure of the earth, and the solar system. In the past, they did not have a spaceship to use. They had to create models of these things, as they did with the models of atoms. Because each scientist had different ideas, we have different models of atoms that we study today."

Student #23, after curriculum implementation

This student's decision making also improved in the GM papaya scenario after the curriculum was implemented. Student #23's response indicated her concern about information related to research results in order to confirm whether consuming GM papaya is safe.

"The information was not enough. There should be research results about GM papaya provided, especially results of experiments feeding GM papaya to animals."

Student #23, after curriculum implementation

Interestingly, Student #23 still did not take into account information related to TNOS when making her decision in the GM mosquito scenario. However, her response changed in that she recognized that the effectiveness of the GM mosquito in eliminating

disease could not possibly be as effective as what is claimed in the scenario. However, she did not see that there could be other consequences from the GM mosquito program, even if it was ineffective in preventing malaria.

"I would support the release of GM mosquitoes. Even though it may be ineffective, I don't see how it would affect me."

Student #23, after curriculum implementation

3. The case of Student #29

Similar to the other two students, Student #29 also had a solid background in science. Before curriculum implementation, his understanding of genetics was average. His understanding of TNOS ranged from 0 (misconception) to 3 (simple) levels. The aspects of TNOS he understood the least were the role of scientists' opinions and imagination in science (0-misconeption) and the tentativeness of scientific knowledge (1-limited). He reported that scientist' opinions and imagination play no part in science. In addition, he reported that science is subject to change. However, he appropriately explained that changes occur when new scientific knowledge is proven to be more correct than the previous knowledge.

"I think science relies only on rationality and facts. Opinion and imagination play no part in science. Science must be neutral and based on facts."

"Laws and theories can change because there can be new laws and theories that are proven to be more correct and better than previous ones."

Student #29, before curriculum implementation

Furthermore, Student #29 did not take into account information related to TNOS dimensions on any of three given scenarios. In the gene therapy and GM mosquito scenarios, he mentioned other information besides what was written in the scenario and that was important to him in making decisions. He emphasized product quality and academic information rather than TNOS. Furthermore, his response on GM papaya showed that he trusted the information given in the scenario because it was confirmed to be good.

"I will eat GM papaya because it is confirmed that GM papaya has similar nutrition to regular papaya and that it is safe."

"The doctor did not tell the patient about the drawbacks of the therapy. If I were the patient, I will not decide to receive the therapy until I am told about the drawbacks."

"I would support the release of GM mosquitoes in my community. I actually want to know about the nature of the disease caused by both old type and the new type of mosquitoes. Anyway, the given information is enough for me to make a decision to support it."

Student #29, before curriculum implementation

After curriculum implementation, Student #29 increased genetics understanding to a score of 28, which is above average. He also increased levels of understanding of all TNOS aspects, especially the aspects of the role of scientists' opinions and imagination in science, and the tentativeness of scientific knowledge, which increased to a score of 4 (competent).

"Opinion and imagination are important to science. Without them, scientists could not find ways to change old knowledge. However, the use of opinion and imagination must be based on facts too."

"Laws and theories can change. The change may be caused by changes in the society in which the laws and theories were created. Examples of changed laws and theories are that the earth is flat and that the earth is the center of the universe, as well as theories that tried to explain the origin of the universe and models of atoms."

Student #29, after curriculum implementation

Similarly, Student #29 improved his decision making in all the given scenarios, especially in the GM papaya scenario, in which he made a level 4 decision by referring to the experts' confirmation and the unknown results of the GM papaya experiment, which were related to individual scientist and epistemological dimensions of TNOS decision making.

"The information provided is not enough. There should be confirmation from experts and there is no information about possible harmful effects that may be caused by the GM papaya."

Student #29, after curriculum implementation

Likewise, he mentioned the need for more research results to confirm the trustworthiness of information provided in the gene therapy and GM mosquito scenarios.

"The information is not enough. There is no information about the drawbacks of the therapy and the comprehensive results of the therapy. There should be reports on case studies to confirm its effectiveness."

"I need to see the research results. The process of GM mosquito is interesting but the given information is not enough"

۰

Student #29, after curriculum implementation

CHAPTER 5

CONCLUSIONS, DISCUSSIONS, AND RECOMMENDATIONS

This chapter summarizes the research questions, objectives of the study, procedures, and conclusions, and discusses the research findings as well as presenting recommendations.

Research questions

This study has the following research questions:

- 1. What are the components of the integrated nature of science curriculum?
- 2. What changes occur in students' understanding of TNOS after the curriculum is implemented?
- 3. What changes occur in students' decision making on science-based dilemmas after the curriculum is implemented?
- 4. Do students who learn under the integrated nature of science curriculum differ in their understanding of genetics from students who learn in the conventional curriculum?

Research objectives

The objectives of this study were to develop and explore effects of the integrated nature of science curriculum on students' learning in terms of

- 1. Students' understanding of TNOS
- 2. Students' decision making on science-based dilemmas
- 3. Students' achievement of genetics understanding

Research Procedures

Phase 1: Development and evaluation of the draft curriculum

1. Development of the draft of the integrated nature of science curriculum

The development of the draft of the integrated nature of science curriculum started from gathering basic information about problems and needs in curriculum development and

generating initial ideas related to the nature of science and genetics to be used as curriculum content. Secondly, the curriculum direction was set by refining the initial ideas and connecting concepts related to the nature of science and genetics by using historical accounts of the discovery of genetics as the curriculum theme. The intended learning outcomes (ILOs) were also generated in this step. Thirdly, the curriculum rationale was developed by addressing ideas, values, and educational goals underlying the curriculum. Fourthly, the ILOs were refined by considering educational standards and the curriculum rationale. Fifthly, the units of the curriculum were formed by considering the coverage of genetics content and the actual period of time devoted to the genetics unit in the participating school's instructional schedule. Sixthly, general teaching strategies were developed in accordance with three instructional approaches: integrative, explicit—reflective, and historical. Lastly, the results from experts and the pilot study were used for revision the curriculum and instructional plans.

2. Evaluation of the draft curriculum by experts

The draft curriculum was examined by five experts. The IOC results ranged from 0.6–0.8, which means the draft curriculum was appropriate and had internal congruence. The aspect of evaluation that resulted in IOC 0.6 was the evaluation aspect, which stated that the curriculum is effective for teaching the nature of science without creating additional alternative science courses. Comments given by the experts were used for revision of the draft curriculum.

3. Pilot study

The draft curriculum was full piloted in Sriayudhya School during school break from March 8 to March 24, 2010. The 20 students who participated in the pilot study were had finished 8th grade and were going to start 9th grade the following academic year. Research instruments were also tried out during the pilot study.

Phase 2: Data collection and curriculum implementation

This study used a pretest-post-test control-group design. Two classrooms in the participating school were used for data collection. One classroom consisted of 51 students with the researcher as instructor following the integrated nature of science curriculum. At

the same time, the other classroom consisted of 45 students, taught by a co-operating teacher using the school's conventional curriculum. Data on students' understanding of TNOS and decision making on science-based dilemmas were collected on students who received the treatment by using two sets of open-ended questionnaires and follow up interview protocols. Students' responses on the questionnaires were analyzed quantitatively and qualitatively and checked for consistencies and discrepancies against the interviews. Data regarding students' achievement in terms of understanding genetics were collected using a multiple-choice achievement test and analyzed using the ANCOVA statistical model in both experiment and control classrooms.

Conclusions and discussions of research findings

Section 1: What are the components of the integrated nature of science curriculum?

The integrated nature of science curriculum developed in this study consists of the following six internally congruent components:

- 1. A rationale for the curriculum that clearly addresses the background of science education and the importance of understanding the nature of science
- 2. Curriculum objectives that enhance students' understanding of the nature of science, targeted at TNOS aspects that are within the scope of curriculum development, students' decision making on science-based dilemmas, and students' achievement in terms of understanding genetics
- 3. Curriculum content with an equal emphasis on the nature of science, targeted TNOS aspects, and genetic content
- 4. Science learning standards and learning indicators from the Basic Education Core Curriculum B.E. 2551 and additional learning indicators specifically designed for assessing students' understanding of TNOS as developed by the researcher
- 5. Instructional plans based on three instructional approaches: integrative, explicit-reflective, and historical
- 6. Assessment of students' understanding of NOS, decision making on science—based dilemmas, and achievement of genetics understanding

The strength of the integrated nature of science curriculum that was developed is that it took the same amount of time as the school's conventional curriculum and instructional plans. Therefore, the integrated curriculum was more effective in terms of its ability to address and enhance multiple types of learning, namely, understanding of TNOS, decision making and better understanding of science content. The effectiveness of the integrated nature of science curriculum was also reported by Khishfe and Lederman (2007) who found that although both integrated and non-integrated nature of science instruction resulted in the same benefits in terms of enhancing students' understanding of the nature of science, the integrated nature of science instruction took less time than did non-integrated instruction. Therefore, integrated instruction might have achieved (at least) the same results with greater economy and efficiency.

The limitation of the integrated nature of science curriculum was also acknowledged, namely, that extra time was needed during the development of curriculum and instructional plans. In particular, the developed curriculum and instructional plans that use a historical approach require extra time to search for and review the history of science resources.

Section 2: What changes occur in students' understanding of TNOS after curriculum implementation?

After the implementation of the integrated nature of science curriculum, students' improved their understanding of all six aspects of TNOS: general views of science, tentativeness of scientific knowledge, the process of science, subjectivity in scientific conclusions, the role of scientists' opinions and imagination in science, and the relationship between science and society. The enhancement of their understanding was evident in the increase of students at the higher levels of understanding as determined by their ability to explain and give examples to illustrate each TNOS aspect. Also, their improvement in TNOS understanding was reflected in the content of their responses on the open—ended questionnaire, which indicated more of them had adopted a contemporary view of the nature of science. More of them came to acknowledge that scientific knowledge is subject to change and that such changes can refute previous scientific understanding, that the

process of science is flexible, that conclusions can be subjective and may be influenced by characteristics of individual scientists, that opinion and imagination play a role in many steps of scientific investigations including data interpretation, and that science and society impact each other. Two kinds misconception were still held by small numbers of students after the curriculum implementation, namely, that the process of science is a universal step-by-step method and that opinion and imagination play no part in science.

The enhancement of students' understanding of TNOS was a result of the integrated nature of science curriculum and its pedagogy, which was designed by combining integrative, explicit-reflective, and historical-based approaches. Past research shows evidence that favorable results in understanding the nature of science cannot be guaranteed by relying upon only one approach. For example, a historical-based approach may be recommended by science educators not only for its effectiveness in teaching NOS but also as a to be necessary tool for understanding NOS (Matthews. 1994). However, a single approach is not always successful in enhancing students' understanding.

A study by Abd-El-Khalick and Lederman (2000) that examined the influence of three history of science courses on students' views of NOS revealed that history of science courses brought about very few and limited changes in participants' views. In addition, they assumed that explicitly addressing specific NOS aspects might enhance the effectiveness of the history of science courses. Their assumption was confirmed by several other studies, for example, a study by Lonsbury and Ellis (2002) that explicitly integrated a historical foundation into a 9th grade genetics unit and compared the results in students' learning between students in the history integration group and the "normal" instruction group. The result revealed that the history integration group significantly outperformed the "normal" instruction group on the NOS understanding scores. Likewise, a study by Veal (2004) combined an explicit—reflective approach, integration, and a historical—based approach by using the history of paleoanthropology as the contextual setting to show changes in the nature of science over time in a distinct science discipline. Results indicated that the use of a historical case combined with the explicit integration of NOS tenets was successful in facilitating a shift in students' views of NOS.

Section 3: What changes occur in students' decision making after the curriculum implementation?

After curriculum implementation, students' decision making on science—based dilemmas improved, as evidenced by more students making their decisions at level 3 and higher, compared making such decisions at level 3 and lower before the curriculum was introduced. Also, the enhancement of their decision making was reflected in the content of their responses, showing that more of them taking into account information related to TNOS when confronting science—based dilemmas. For the most part, students indicated concerns regarding the trustworthiness of the researcher and the need for more research, both of which relate to the epistemological dimension of TNOS. Also, some students took into account information about third—party verification, trustworthiness of the researcher, and experts' confirmation, which related to the "individual scientist" dimension of TNOS. However, fewer students indicated concerns about sociocultural context and laws and regulations.

It can be seen from the result that before the curriculum was implemented, the connection between TNOS understanding and decision making was not clear. However, the connection was easier to see after implementation, especially with regard to students' views concerning the tentativeness of scientific knowledge and the subjectivity of scientific conclusions. This was seen in their decision making after curriculum implementation, which showed more students indicating their concerns related to the unknown results of scientific knowledge. This result is related to their increased understanding of the tentativeness of scientific knowledge. Similarly, more students indicated their concerns related to trustworthiness of the researcher and third–party verification when making decisions regarding science–based dilemmas. This result is related to the increase of students who reported that scientific conclusions are influenced by scientists' personal knowledge and skill.

The connection of NOS understanding and decision making was also found in the research of Sadler and others (2004). From their findings, it seems probable that only students making up the higher levels of NOS understanding posses enough requisite

understanding to comprehend the conceptual aspects related to the NOS. They also found that students' interpretation and evaluation of conflicting information regarding socioscientific issues are influenced by a variety of factors related to NOS such as data interpretation and social interactions, including individuals' own articulation of personal beliefs. For example, students who accept unfounded opinion and predictions as variable forms of data did not possess a well developed notion of the empirical basis of science. Similarly, students who viewed science as tentative reported their concerns about the data, either about the data itself or the data analysis as well as the influence from scientists' opinions and personal beliefs when evaluating divergent scientific conclusions.

Similarly, Zeidler and others (2002) claimed that fostering understanding of the nature of science would result in better decision making. From their findings, when students are confronted with socio-scientific dilemmas or information that challenges their initial beliefs, common responses were to ignore or reject anomalous data or to hold in abeyance the data that was previously believed. They also claimed that emphasizing NOS in the classroom would help balance students' decisions, especially with regard to selecting evidence in making scientific judgments and forming personal opinions.

Section 4: Do students who learn in the integrated nature of science curriculum differ in their understanding of genetics from students who learn under the conventional curriculum?

The mean scores in genetics understanding of the integrated nature of science curriculum class and the conventional curriculum class were 24.06 and 14.20, respectively. The ANCOVA results of students' understanding of genetics indicated that the mean scores were significantly different at the 0.01 level. Therefore, students' understanding in the integrated nature of science curriculum class was significantly higher.

This result supports many claims made by different science educators. For example, Matthews (1994) points out that the history of science promotes better understanding of scientific concepts and methods as well as an understanding of the nature of science with cultural–intellectual validity. This claim was supported by the research of Abd-El-Khalick (2000), which examined the results of embedding the history of science into

preservice teachers' science courses. He asserted that "the context and content in which preservice teachers learned about NOS influenced their ability to apply their understanding to novel contexts of contents." Also, Lonsbury and Ellis (2002) found that two groups of students, the history integration group and the "normal" instruction group, showed no statistically significant difference in their performance in the genetics unit of their post—test. This result confirms the idea that the integration of the nature of science curriculum and instructions will not cause negative results on students' understanding of science content.

Section 5: Examples of students' cases

In three student cases there was a similar pattern, namely, that after curriculum implementation, all students increased their levels of understanding of TNOS, decision making on science-based dilemmas, and achievement in genetics understanding. Connections between their understanding of TNOS and their decision making were also found.

However, there is still no evidence that understanding of the nature of science directly improves students' decision-making ability. On the contrary, teaching the nature of science alone may not result in students automatically connecting their understanding of the nature of science to decision making. As seen by the results of students' understanding of TNOS, even though students may greatly improve their understanding of the relationship between science and society, this does not mean that they necessarily take into account the socio-cultural contexts of science in their decision making. Additionally, students indicated in the interviews that when making decisions what first comes to mind are classroom activities that focused on controversies and dilemmas in science rather that the historical accounts of how science changes. Therefore, teaching NOS should be incorporated as a collaborative activity that can provide students with the opportunity to connect NOS ideas with controversies and dilemmas in science.

Recommendations

1. Recommendations for policy making

It has been suggested by international science education bodies that understanding of the nature of science should be promoted in science education both at the school level and in terms of teachers' professional development. However, teaching the nature of science alone may not produce the desired results, namely, that learners accommodate their understanding of the nature of science with their decision making. The present study reveals that when making decisions students tend to think of classroom activities that directly focus on controversies and dilemmas rather than narratives related to the nature of science. Therefore, in promoting better understanding of the nature of science the focus should be on how students can be helped to apply this understanding to their lives and how they can bring a concern with the nature of science to situations in which they face controversies and dilemmas.

Science education policy makers should keep clearly in mind the ultimate purpose for promoting better understanding of the nature of science so as to focus on those aspects of the nature of science a student should know and in which situations they should be able to apply their understanding of each aspect of the nature of science.

Universities and institutes involved in the professional development of science teachers should strengthen learning resources on history as well as contemporary science issues as well as encouraging teachers to apply them in their classes to help students understand the nature of science and to connect their understanding to dilemmas that relate to their lives.

2. Recommendations for application of this study

This study was effective in terms of promoting students' understanding of the tentative nature of science and in raising their awarenss of the nature and limitations of science when making decisions on science—based dilemmas. Therefore, the development of integrated nature of science curricula as well as instructional materials should be promoted.

To start developing an integrated nature of science curriculum by using the history of science as content, curriculum developers might start from existing curricula or science courses. Curriculum developers should examine the connection between science content and concepts in science courses and, if possible, bringing all concepts together under a historical theme. In many school science courses, scientific concepts presented in a course may seem distinct from each other. Instead, concepts related to genetics and concepts related to physics could be combined into one science course. In case the curriculum developer finds it difficult to connect all the concepts into one science course, the use of multiple historical short stories, in other words, historical vignettes for each science concept might be more suitable to use.

Teachers as well may apply the findings of this study by developing or adjusting their instructional plans to include a history of science. Teachers may start by adjusting some parts of their instructional plans. They can look for content relating to historical background that they already have and feel comfortable to teach and then link to particular aspects of the nature of science.

3. Recommendations for further studies

Future studies related to promoting the understanding of the nature of science and relating it to decision making can be conducted in the following ways:

3.1. Research on NOS curriculum development

The type of research carried out on the integrated nature of science curriculum development could be carried out in other areas of science content to further examine the effectiveness of the curriculum and instructional approaches. In addition, other instructional strategies, for example, the use of historical vignettes and controversial issues could be explored.

3.2. Research on teachers' professional development

Researchers may expand the fruitfulness of this research by studying training strategies to help science teachers in using curriculum and particular instructional approaches in this research to help them in promoting effective science lessons.

BIBLIOGRAPHY

- Abd-El-Khalick, F. (2001). Embedding Nature of Science Instruction in Preservice

 Elementary Science Courses: Abandoning Scientism, But... *Journal of Science Teacher Education*. 12(3): 215-233.
- Abd-El-Khalick, F. (2005). Developing Deeper Understandings of Nature of Science: The Impact of a Philosophy of Science Course on Preservice Science Teachers' Views and Instructional Planning. *International Journal of Science Education*. 27(1): 15 42
- Abd-El-Khalick, F; & Lederman, N. G. (2000). The Influence of History of Science Courses on Students' Views of Nature of Science. *Journal of Research in Science Teaching*. 37(10): 1057-1095.
- Abd-El-Khalick, F.; & Akerson, V. L. (2004). Learning as Conceptual Change: Factors Mediating the Development of Preservice Elementary Teachers' Views of Nature of Science. Science Education. 88(5): 785-810.
- Abd-El-Khalick, F.; Bell, R. L.; & Lederman, N. G. (1998). The Nature of Science and Instructional Practice: Making the Unnatural Natural. *Science Education*. 82(4): 417-436.
- Akerson, V. L.; Abd-El-Khalick, F.; & Lederman, N. G. (2000). Influence of a Reflective Explicit Activity-Based Approach on Elementary Teachers' Conceptions of Nature of Science. *Journal of Research in Science Teaching*. 37(4): 295-317.
- Akerson, V. L.; & Hanuscin, D. L. (2007). Teaching Nature of Science through Inquiry: Results of a 3-Year Professional Development Program. *Journal of Research in Science Teaching*. 44(5): 653-680.
- Alsop, S.; & Hicks, K. (2001). *Teaching Science a Handbook for Primary & Secondary School Teachers*. London: Kogan Page Limited.
- Alters, B. J. (1997). Whose Nature of Science? . *Journal of Research in Science Teaching*. 34(1): 39-55.
- Barclay, G. (2006). The Important of Teaching the Nature of Science: Helping Our Students Battle Pseudoscientific Ideas. *The American Biology Teacher*. 68(5): 261-262.

- Bartholomew, H.; Osborne, J.; & Ratcliffe, M. (2004). Teaching Students Ideas-About-Science?: Five Dimensions of Effective Practice. *Science Education*. 88(5): 655-682.
- Bayer, B. K. (1991). *Teaching Thinking Skills a Handbook for Secondary School Teachers*. Boston: Allyn and Bacon.
- Bell, R. L.; et al. (2003). Just Do It? Impact of a Science Apprenticeship Program on High School Students' Understandings of the Nature of Science and Scientific Inquiry. *Journal of Research in Science Teaching*. 40(5): 487-509.
- Bell, R. L.; & Lederman, N. G. (2003). Understandings of the Nature of Science and Decision Making on Science and Technology Based Issues. *Science Education*. 87(3): 352-377.
- Bell, R. L.; Lederman, N. G.; & Abd-El-Khalick, F. (1998). Implicit Versus Explicit Nature of Science Instruction: An Explicit Response to Palmquist and Finley. *Journal of Research in Science Teaching*. 35(9): 1057-1061.
- Bell, R. L.; Lederman, N. G.; & Abd-El-Khalick, F. (2000). Developing and Acting Upon One's Conception of the Nature of Science: A Follow-up Study. *Journal of Research in Science Teaching*. 37(6): 563-581.
- BouJaoude, S. (2002). Balance of Scientific Literacy Themes in Science Curricula: The Case of Lebanon. *International Journal of Science Education*. 24(2): 139-156.

.....

- Brickhouse, N.W.; et al. (2000). Diversity of Students' View About Evidence, Theory, and the Interface between Science and Religion in an Astronomy Course. *Journal of Research in Science Teaching*. 37(4): 340-362.
- Bybee, R.; Powell, J.; & Ellis, J. (1991). Integrating the History and Nature of Science and Technology in Science and Social Studies Curriculum. *Science Education*. 75(1): 143-145.
- Carey, S.; & Smith, C. . (1993). On Understanding the Nature of Scientific Knowledge. *Educational Psychologist.* 28(3): 235-251.
- Cavallo, A. (2007). Thinking Like Scientist. The Science Teacher. 74(6): 86-88.

- Chamrat, S. (2009). Exploring Thai Grade 10 Chemistry Students' Understanding of Atomic Structure Concepts and the Nature of Science through the Model-Based Approach.

 Bangkok: Kasetsart University.
- Chen, S. (2006). Development of an Instrument to Assess Views on Nature of Science and Attitudes toward Teaching Science. *Science Education*. 90(5): 803-819.
- Clough, M. P. (2009). Humanizing Science to Improve Post-Secondary Science Education

 Notre Dame, INRetrieved

 from http://www.storybehindthescience.org/pdf/2009IHPST.pdf
- Donnelly, J. (2001). Contested Terrain or Unified Project? 'The Nature of Science' in the National Curriculum for England and Wales. *International Journal of Science Education*. 23(2): 181-195.
- Driver, R; et al. (1996). Young People's Images of Science. Bristol: Open University Press.
- Duncan, D.; & Arthurs, L. (2009). Teaching the Nature of Science: Successful Strategies in an Introductory College-Lelve Astronomy Course. ColoradoRetrieved from http://casa.colorado.edu/~dduncan/pseudoscience/PseudosciencePaperPrePublicationDraft.pdf
- Hanuscin, D. L.; Akerson, V. L.; & Phillipson-Mower, T. (2006). Integrating Nature of Science Instruction into a Physical Science Content Course for Preservice Elementary Teachers: Nos Views of Teaching Assistants. *Science Education*. 90(5): 912-935.
- Hind, A.; Leach, J.; & Ryder, J. (2001). *Teaching About the Nature of Scientific Knowledge*and Investigation on as/a Level Science Course. Leeds, United Kingdom: The

 Nuffield Foundation. Retrieved

 from www.education.leeds.ac.uk/research/cssme/NuffProjReport.pdf
- Hipkins, R.; Barker, M.; & Bolstad, R. (2005). Teaching the 'Nature of Science': Modest Adaptations or Radical Reconceptions? *International Journal of Science Education*. 27(2): 243-254.
- Hodson, D. (1988). Toward a Philosophically More Valid Science Curriculum. *Science Education*. 72(1): 19-40.

- Hogan, K. (2000). Exploring a Process View of Students' Knowledge About the Nature of Science. *Science Education*. 84(1): 51-70.
- Holbrook, J.; & Rannikmae, M. (2007). The Nature of Science Education for Enhancing Scientific Literacy. *International Journal of Science Education*. 29(11): 1347-1362.
- Irez, S. (2006). Are We Prepared?: An Assessment of Preservice Science Teacher Educators' Beliefs About Nature of Science. *Science Education*. 90(6): 1113-1143.
- Janis, I.L.; & Mann, L. (1977). Decision Making a Psychology Analysis of Conflict, Choice, and Commitment. New York: Free Press.
- Johnston, A. T; & Southerland, S. A. (2000). The Multiple Meanings of Tentative Science.

 DenverRetrieved from http://www.pdfcari.com/The-Multiple-Meanings-of-Tentative-Science.html
- Johnston, A. T; & Southerland, S. A. (2002). Conceptual Ecologies and Their Influence on Nature of Science Conceptions: More Dazed and Confused Than Ever. New Orleans, LARetrieved from http://physics.weber.edu/johnston/research/NOSecologies.pdf
- Kaewmuangmoon, S. (2008). A Development of the Upper Secondary Science Curriculum on Genetics to Enhance Socio-Scientific Decision Making Ability. Dissertation of Doctor of Education (Science Education). Bangkok: Srinakharinwirot University.
- Khishfe, R.; & Lederman, N. (2007). Relationship between Instructional Context and Views of Nature of Science. *International Journal of Science Education*. 29(8): 939-961.
- Kuhn, Thomas. S. (1996). *The Structure of Scientific Revolutions*. third ed. Chicago: The University of Chicago Press.
- Lawson, A.E. (1995). Science Teaching and the Development of Thinking. Belmont: Wadsworth, Inc.
- Le Grange, L. (2007). Integrating Western and Indigenous Knowledge Systems: The Basis for Effective Science Education in South Africa. *International Review of Education*. 53(5): 577-591.

- Lederman, N. G. (2007). Nature of Science: Past, Preset, and Future. In *Handbook of Research on Science Education*. Edited by Abell, S.K.; &Lederman, N.G. pp. 831-880. Mahwah, New Jersy: Lawrence Erlbaum Associates.
- Lederman, N. G; & O'Malley, M. (1990). Students' Perceptions of Tentativeness in Science: Development, Use, and Sources of Change. *Science Education*. 74(2): 225-239.
- Lederman, N. G; & Zeidler, D. L. (1987). Science Teachers' Conceptions of the Nature of Science: Do They Really Influence Teaching Behavior? *Science Education*. 71(5): 721-734.
- Lederman, N.G. (1986). Relating Teaching Behavior and Classroom Climate to Changes in Students' Conceptions of the Nature of Science. *Science Education*. 70(1): 3-19.
- Lederman, N.G. (1992). Students' and Teachers' Conceptions of the Nature of Science: A Review of the Research. *Journal of Research in Science Teaching*. 29(4): 331-359.
- Lederman, N.G; & Abd-El-Khalick, F. (1998). Avoiding De-Natured Science: Activities That Promote Understandings of the Nature of Science. In *The Nature of Science in Science Education: Rationales and Strategies*. Edited by McComas, W.F. Dordrecht, The Netherlands: Kluwer Academic Publishers.
- Lederman, N.G; & Ko, E.K. (2004). Views of the Nature of Science, Form E. Chicago, Illinois Institute of Technology: Council of state science supervisors. Retrieved from http://www.csss-science.org/downloads/VNOS_E.pdf
- Lederman, Norman G; & Lederman, Judith S. (2004). Revising Instruction to Teach Nature of Science. Science Teacher. 7(9): 39-39.
- Lemlech, J.K. (1998). Curriculum and Instructional Methods for the Elementary and Middle School. 4th ed. New Jersey: Prentice-Hall, Inc.
- Limpanont, P. (2004). A Study of the Instruction on the Nature of Science of Teachers

 According to Science Strand. Thesis of Master of Education. Bangkok:

 Chulalongkorn University.
- Liu, S; & Lederman, N. G. (2007). Exploring Prospective Teachers' Worldviews and Conceptions of Nature of Science. *International Journal of Science Education*. 29(10): 1281-1307.

- Lonsbury, J.G; & Ellis, J.D. (2002). Science History as a Means to Teach the Nature of Science Concepts: Using the Development of Understanding Related to Mechanisms of Inheritance. *Electronic Journal of Science Education*.
 7(2). http://wolfweb.unr.edu/homepage/crowther/ejse/lonsbury.pdf
- Lunn, S. (2002). 'What We Think We Can Safely Say...': Primary Teachers' Views of the Nature of Science. *British Educational Research Journal*. 28(5): 649.
- Martín-Díaz, M. J. (2006). Educational Background, Teaching Experience and Teachers' Views on the Inclusion of Nature of Science in the Science Curriculum.

 International Journal of Science Education. 28(10): 1161-1180.
- Matthews, M.R. (1994). Science Teaching: The Role of History and Philosophy of Science.

 New York: Routledge.
- McCarthy, S; & Sanders, M. (2007). Broad Classification and the Provisional Nature of Science. *Journal of Biological Education*. 41(3): 123-130.
- McComas, W.F; Clough, M.P; & Almazroa, H. (2000). The Role and Character of the Nature of Science in Science Education. In *The Nature of Science in Science Education: Rationales and Strategies*. Edited by McComas, W.F. pp. 3-39. The Netherlands: Kluwer Academic.
- McNay, M. (2000). The Conservative Political Agenda in Curriculum: Ontario's Recent Experience in Science Education. *Journal of Curriculum Studies*. 32(6): 749-756.

000000

- McWhorter, K. T. (2006). Study and Critical Thining Skills in College. 6th ed. New York: Pearson.
- Meesri, S. (2007). A Development of Professional Development Program for Enhancing Teachers' Understanding of the Nature of Science and Its Implementation in the Classroom. Dissertation of Doctor of Education (Science Education). Bangkok: Srinakharinwirot University.
- Meichtry, Y. J. (1993). The Impact of Science Curricula on Student Views About the Nature of Science. *Journal of Research in Science Teaching*. 30(5): 429-443.
- Ministry of Education. (2008). *The Basic Education Core Curriculum B.E. 2551(A.D. 2008*). Bangkok: : The Express Transportation Organization of Thailand.

- Mintzes, J.J; Wandersee, J.H; & Novak, J.D. (1998). *Teaching Science for Understanding a Human Constructivist View*. San Dlego: Acadeic Press.
- Museum of Paleontology University of California. (2009). *Understanding Science*. Retrieved Sep 20, from http://www.understandingscience.org
- National Academy of Science. (1998). *Teaching About Evolution and the Nature of Science*. Washington D.C.: National Academy Press.
- Oliva, P.F. (2009). *Developing the Curriculum*. 7 ed. Boston, M.A.: Pearson Education, Inc.
- Olson, J.K; et al. (2005). Improving Students' Nature of Science Understanding through

 Historical Short Stories in and Introductory Geology Course. EnglandRetrieved

 from www.ihpst2005.leeds.ac.uk/papers/Olson_Clough_Bruxvoort_Vanderlinden.pdf
- Ornstein, A.C; & Hunkins, F.P. (2004). *Curriculum: Foundations, Principles, and Issues*. 4th ed. Boston: Allyn and Bacon.
- Osborne, J.; et al. (2001). What Should We Teach About Science? A Delphi Study.

 London: EPSE Research Network King's College London.
- Palmquist, B.C.; & Finley, F. N. (1997). Preservice Teachers' Views of the Nature of Science During a Postbaccalaureate Science Teaching Program. *Journal of Research in Science Teaching*. 34(6): 595-615.
- Phillips, L.M.; & Norris, S.P. (1999). Interpreting Popular Reports of Science: What Happens When the Reader's World Meets the World on Paper?
- Phillips, Linda M. (1999). Interpreting Popular Reports of Science: What Happens When the Reader's World Meets the World on Paper? *International Journal of Science Education*. 21(3): 317 327. Retrieved May 23, 2011, from http://www.informaworld.com/10.1080/095006999290723
- Posner, G. (2004). Analyzing the Curriculum. 3 ed. New York: McGrew-Hill.
- Posner, G.; & Rudnisky, A.N. (2006). Course Design a Guide to Curriculum Development for Teachers. 7 ed. Boston, MA: Pearson Education, Inc.
- Rath, LE; & et.al. (1967). *Teaching for Thinking: Theory and Application*. Columbus, Ohio: Charles E. Merril.

- Roma, S. (2551). A Curriculum Development on the Nature of Science for the Third Grade Level Students. Bangkok: Srinakharinwirot University.
- Rudolph, J. L. (2000). Reconsidering the 'Nature of Science' as a Curriculum Component. *Journal of Curriculum Studies*.
- Ryan, A.; & Aikenhead, G. (1992). Students' Preconceptions About the Epistemology of Science. *Science Education*. 25: 607-629.
- Sadler, T. D.; Barab, S.A.; & Scott, B. (2007). What Do Students Gain by Engaging in Socioscientific Inquiry? *Research Science Education*. 37(4): 371-391.
- Sadler, T. D.; Chambers, F. W.; & Zeidler, D. L. (2004). Student Conceptualizations of the Nature of Science in Response to a Socioscientific Issue. *International Journal of Science Education*. 26(4): 387-409.
- Sadler, T. D.; & Zeidler, D. L. (2005). Patterns of Informal Reasoning in the Context of Socioscientific Decision Making. *Journal of Research in Science Teaching*. 42(1): 112-138.
- Sahin, N.; Deniz, S.; & Gorgen, I. (2006). Student Teachers' Attitude Concerning

 Understanding the Nature of Science in Turkey. *International Education Journal*.

 7(1): 51-55.
- Schwartz, R. S.; & Lederman, N. G. (2002). It's the Nature of the Beast: The Influence of Knowledge and Intentions on Learning and Teaching Nature of Science. *Journal of Research in Science Teaching*. 39(3): 205-236.
- Schwartz, R. S.; Lederman, N. G.; & Crawford, B. A. (2004). Developing Views of Nature of Science in an Authentic Context: An Explicit Approach to Bridging the Gap between Nature of Science and Scientific Inquiry. *Science Education*. 88(4): 610-645.
- Smith, C. L.; et al. (2000). Sixth-Grade Students' Epistemologies of Science: The Impact of School Science Experiences on Epistemological Development. *Cognition & Instruction*. 18(3): 349-422.
- Sorby, B. (2000). The Irresistable Rise of the Nature of Science in Science Curriculum. In *Issues in Science Teaching*. Edited by Sears, J.; &Osorensens, P. New York: RoutledgeFalmer.

- Sowell, E.J. (1996). Curriculum: An Integrative Introduction. Englewood Cliffs, NJ: Merrill.
- Sturtevant, A.H. (2001). *A History of Genetics*. Cold Spring Habor, New York: Cold Spring Habor Laboratory Press.
- Sutherland, D. (2002). Exploring Culture, Language and the Perception of the Nature of Science. *International Journal of Science Education*. 24(1): 1-25.
- Tyler, W.F. (1969). *Basic Principles of Curriculum and Instruction*. Chicago: The University of Chicago Press.
- Veal, W. R. (2004). Neandertals, Naienté, and the Nature of Science a Preliminary Investigation of the Impact of Historical Case-Based Pedagogy for Science Teachers. Curriculum & Teaching Dialogue. 6(1): 69-80.
- Wandersee, J.H.; & Roach, L.M. (1998). Interactive Historical Vignettes. In *Teaching Science for Understanding a Human Constructivist View.* Edited by Mintzes, J.J.; Wandersee, J.H.; &Novak, J.D. San Diego: Academic Press.
- Wellington, Jerry. (2000). Teaching and Learning Secondary School Science Contemporary

 Issues and Practical Approaches. New York: Routledge.
- Zeidler, D. L; et al. (2002). Tangled up in Views: Beliefs in the Nature of Science and Responses to Socioscientific Dillemmas. *Science Education*. 86: 342-367.

ัรินทร์...

APPENDIX A
รายนามผู้เชี่ยวชาญในการตรวจเครื่องมือวิจัย

รายนามผู้เชี่ยวชาญในการตรวจเครื่องมือวิจัย

- 1. ผู้เชี่ยวชาญในการตรวจหลักสูตรฉบับร่าง แผนการจัดการเรียนรู้ และหนังสือเรียน
 - 1.1 ว่าที่ร้อยตรี ดร. มนัส บุญประกอบ สถาบันวิจัยพฤติกรรมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
 - 1.2 อ. ดร. กุศลิน มุศิกุล สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี
 - 1.3 อ. ดร. สุรีย์พร แก้วเมืองมูล
 ภาควิชาการศึกษา มหาวิทยาลัยนเรศวร
 - 1.4 อ.ดร. ณัฏฐิกา สุวรรณาศรัย
 ภาควิชาชีววิทยา มหาวิทยาลัยศรีนครินทรวิโรฒ
 - 1.5 อ. ละอองดาว เป็นสุข
 กลุ่มสาระการเรียนรู้วิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
- 2. ผู้เชี่ยวชาญในการตรวจสอบแบบสอบถามธรรมชาติที่เปลี่ยนแปลงได้ของวิทยาสตร์และ แบบสอบถามการตัดสินใจในประเด็นปัญหาเกี่ยวกับวิทยาศาสตร์
 - 2.1 อ. ดร. กุศลิน มุศิกุล สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี
 - 2.2 อ. ดร. กานจุลี ปันยาอินทร์
 สถาบันวิทยาศาสตร์ สำนักวิชาการและมาตรฐานการศึกษา สำนักงานคณะกรรมการการศึกษาขั้น
 พื้นฐาน
 - 2.3 อ. ดร. เสาวลักษณ์ โรมา
 กลุ่มสาระการเรียนรู้วิทยาศาสตร์ โรงเรียนระยองวิทยาคม
- 3. ผู้เชี่ยวชาญในการตรวจแบบวัดความเข้าใจในเนื้อหาสาระพันธุศาสตร์
 - 3.1 ว่าที่ร้อยตรี ดร. มนัส บุญประกอบ
 - 3.2 อ. ดร. ณัฏฐิกา สุวรรณาศรัย
 - 3.3 อ. ธวัต สังขวรรณะ

กลุ่มสาระการเรียนรู้วิทยาศาสตร์ โรงเรียนศรีอยุธยา ในพระอุปถัมภ์

APPENDIX B

- หลักสูตรบูรณาการธรรมชาติของวิทยาศาสตร์
- ตัวอย่างแผนการจัดการเรียนรู้
- ตัวอย่างเอกสารประกอบการเรียน

หลักสูตรบูรณาการธรรมชาติของวิทยาศาสตร์และพันธุศาสตร์

สำหรับนักเรียนระดับมัธยมศึกษาตอนต้น

เรื่อง ไขปริศนาพันธุศาสตร์ด้วยประวัติวิทยาศาสตร์

หลักการของหลักสูตร

นโยบายการจัดการศึกษาวิทยาศาสตร์ทั้งในระดับชาติและระดับนานาชาติต่างให้ ความสำคัญกับการส่งเสริมให้นักเรียนมีความเข้าใจในธรรมชาติและข้อจำกัดของวิทยาศาสตร์ โดยมี ความคาดหวังว่าความรู้ความเข้าใจในเรื่องดังกล่าวจะช่วยให้นักเรียนเป็นผู้บริโภคที่ดีในการรับ ข้อมูลข่าวสารเกี่ยวกับองค์ความรู้ทางวิทยาศาสตร์ในโลกปัจจุบัน อย่างไรก็ตาม เป็นที่น่าเสียดายว่า การจัดการศึกษาธรรมชาติของวิทยาศาสตร์ในปัจจุบันยังมักแยกการให้ความรู้เกี่ยวกับธรรมชาติ และข้อจำกัดของวิทยาศาสตร์ออกจากเนื้อหาสาระวิทยาศาสตร์ หลักสูตรนี้จึงถูกสร้างขึ้นเพื่อ นำเสนอเนื้อหาสาระเกี่ยวกับธรรมชาติของวิทยาศาสตร์ที่ฝังตรึงอยู่ในองค์ความรู้ทางวิทยาศาสตร์ เรื่องพันธุกรรม และการถ่ายทอดลักษณะเพื่อให้นักเรียนเกิดการเรียนรู้อย่างมีความหมายในเรื่อง เกี่ยวกับการถ่ายทอดลักษณะของสิ่งมีชีวิตและ กระบวนการที่นักวิทยาศาสตร์ได้มาซึ่งองค์ความรู้ ต่างๆทางพันธุศาสตร์ตั้งแต่ในอดีตเรื่อยมาจนถึงปัจจุบัน วิธีการที่นักวิทยาศาสตร์นำข้อค้นพบทาง พันธุศาสตร์ไปใช้อธิบายปรากฏการณ์ต่างๆในโลก ไปจนถึงผลกระทบที่องค์ความรู้ทางพันธุศาสตร์ และสังคมมีต่อกันและกัน

เป้าหมายของหลักสูตร

หลักสูตรนี้มีเป้าหมายเพื่อพัฒนาผู้เรียนให้มีความรุ้ความสามารถดังต่อไปนี้

- 1. เข้าใจธรรมชาติของวิทยาศาสตร์ในด้านความรู้ที่มีความน่าเชื่อถือและมีเหตุมีผล แต่ใน ขณะเดียวกันก็มีความไม่แน่นอนและสามารถเปลี่ยนแปลงได้
- 2. เข้าใจพัฒนาการของการสร้างองค์ความรู้ทางวิทยาศาสตร์ที่มีความเกี่ยวข้องกับมิติปัจจัยหลาย มิติ ทั้งด้านญาณวิทยาขององค์ความรู้ บริบททางสังคมและวัฒนธรรม และคุณสมบัติส่วนตัวของนัก วิทยาศาสต์ผู้พัฒนาองค์ความรู้

- 3. เข้าใจหลักการพื้นฐานของพันธุศาสตร์ ในเรื่องของกลไกการถ่ายทอดลักษณะ บทบาทของยืน โครโมโซม และดีเอ็นเอ การประยุกต์ใช้ความรู้ทางพันธุศาสตร์ และประเด็นโต้แย้งที่เกี่ยวข้องกับ การดัดแปรพันธุกรรมสิ่งมีชีวิต
- 4. คำนึงถึงธรรมชาติของวิทยาศาสตร์ในการตัดสินใจเกี่ยวกับประเด็นปัญหาต่างๆที่เกี่ยวข้องกับ วิทยาศาสตร์

สาระการเรียนรู้

เนื้อหาสาระที่จัดให้นักเรียนเรียนรู้ตามจุดมุ่งหมายของหลักสูตรประกอบด้วยหัวข้อหลัก 2 เรื่อง ได้แก่ พันธุกรรมและการถ่ายทอดลักษณะทางพันธุกรรม และธรรมชาติของวิทยาศาสตร์ใน ด้าน ลักษณะที่เปลี่ยนแปลงได้ของวิทยาศาสตร์

หัวข้อหลักที่ 1 พันธุกรรมและการถ่ายทอดลักษณะทางพันธุกรรม

เนื้อหาสาระเรื่องพันธุกรรมและการถ่ายทอดลักษณะในหลักสูตรนี้ครอบคลุมตามสาระการ เรียนรู้ที่ 1 สิ่งมีชีวิตกับการดำรงชีวิต มาตรฐานการเรียนรู้ที่ 1.2 ซึ่งมีสาระสำคัญดังนี้

สารพันธุกรรมที่ทำหน้าที่ควบคุมการถ่ายทอดลักษณะทางพันธุกรรมของสิ่งมีชีวิต เรียกว่า ดีเอ็นเอ ซึ่งเป็นองค์ประกอบหนึ่งของโครโมโซม ที่อยู่ภายในนิวเคลียสของเซลล์ ดีเอ็นเอ ประกอบด้วยหน่วยควบคุมลักษณะทางพันธุกรรมต่าง ๆมากมายเรียกว่า ยีน ซึ่งจะถ่ายทอดจากพ่อ แม่สู่ลูกได้ด้วยกระบวนการถ่ายทอดลักษณะทางพันธุกรรมที่เกิดขึ้นระหว่างการสร้างเซลล์สืบพันธุ์ และการปฏิสนธิ ทำให้สิ่งมีชีวิตชนิดเดียวกันคงรูปร่าง และลักษณะแสดงออกทั่วไปที่คล้ายคลึงกัน เอาไว้แต่ในขณะเดียวกันก็มีความแตกต่างที่ก่อให้เกิดความหลากหลายทางพันธุกรรมและความ หลากหลายของสิ่งมีชีวิต ความผิดปกติที่เกิดขึ้นกับยืนและโครโมโซมทำให้สิ่งมีชีวิตรวมทั้งมนุษย์ เกิดโรคทางพันธุกรรมที่สามารถถ่ายทอดไปสู่ลูกหลานได้ ดังนั้นผู้ที่ป่วยด้วยโรคทางพันธุกรรมจึง จำเป็นต้องมีการวางแผนครอบครัวเพื่อป้องกันการแพร่กระจายของโรค ปัจจุบันด้วย เทคโนโลยีชีวภาพและเทคโนโลยีพันธุวิศวกรรมทำให้นักวิทยาศาสตร์สามารถดัดแปรดีเอ็นเอ เพื่อให้สิ่งมีชีวิตมีลักษณะตามต้องการเพื่อนำไปใช้ประโยชน์ในด้านต่างๆทั้งทางการแพทย์ การเกษตร และอุตสาหกรรม

หัวข้อหลักที่ 2 ธรรมชาติของวิทยาศาสตร์ : วิทยาศาสตร์เปลี่ยนแปลงได้

สาระธรรมชาติของวิทยาศาสตร์ในหลักสูตรนี้กำหนดขึ้นโดยผู้วิจัยให้มีความครอบคลุม ประเด็นที่สำคัญต่างๆเกี่ยวกับธรรมชาติของความรู้ทางวิทยาศาสตร์ โดยใช้ลักษณะที่เปลี่ยนแปลง ได้ของความรู้ทางวิทยาศาสตร์เป็นหัวข้อหลักในการเชื่อมโยงธรรมชาติของวิทยาสาสตร์ด้านอื่นๆ เข้าด้วยกัน ตามรายละเอียดดังนี้

ธรรมชาติข้อหนึ่งที่สำคัญของวิทยาศาสตร์คือ ความรู้ทางวิทยาศาสตร์สามารถ เปลี่ยนแปลงได้ ดังนั้นวิทยาศาสตร์จึงไม่ใช่ความจริงแท้ ลักษณะที่เปลี่ยนแปลงได้ของวิทยาศาสตร์ เกิดขึ้นจากมิติปัจจัยหลายมิติ ได้แก่ ญาณวิทยาทางวิทยาศาสตร์ บริบททางสังคมและวัฒนธรรม และลักษณะส่วนบุคคลของนักวิทยาศาสตร์ มิติต่างๆเหล่านี้มีความเกี่ยวข้องเพื่อมโยง และส่ง อิทธิพลต่อกันและกันอย่างไม่สามารถแยกออกจากกันได้

หัวข้อรองที่ 1 ญาณวิทยาทางวิทยาศาสตร์

กระบวนการได้มาซึ่งความรู้ทางวิทยาศาสตร์มีพื้นฐานมาจากการสังเกตและเก็บ รวบรวมข้อมูล และการตีความหมายข้อมูลเพื่อสร้างองค์ความรู้

การสังเกตและเก็บรวบรวมข้อมูลทางวิทยาศาสตร์

กระบวนการทำงานทางวิทยาศาสตร์จำเป็นต้องอาศัยการสังเกตและ รวบรวมหลักฐาน นักวิทยาศาสตร์ทำการสังเกตปรากฏการณ์ต่างๆในธรรมชาติเพื่อใช้เป็นหลักฐาน ในการสนับสนุนข้อสรุปทางวิทยาศาสตร์ ปัจจัยต่างๆที่ส่งผลกระทบต่อกระบวนการสังเกต เช่น ทัศนคติ พื้นฐานความรู้ ทักษะ และประสบการณ์ส่วนตัวของนักวิทยาศาสตร์ ปัจจัยเหล่านี้สร้าง กรอบความคิดให้นักวิทยาศาสตร์ในการเลือกปรากฏการณ์ที่จะสังเกต และเลือกข้อมูลที่จะเก็บ รวบรวมไปใช้ในการสร้างข้อสรุป ด้วยเหตุนี้ แม้ว่านักวิทยาศาสตร์สองคนจะทำการสังเกต ปรากฏการณ์เดียวกันในช่วงเวลาเดียวกัน ก็อาจจะได้ผลการสังเกตที่แตกต่างกัน นอกจากนี้บริบท ทางสังคมและวัฒนธรรมยังส่งผลต่อการสังเกตทางวิทยาศาสตร์ เนื่องจากสังคมและวัฒนธรรมมี บทบาทในการสนับสนุนและให้ทุนการวิจัย ทำให้การวิจัยทางวิทยาศาสตร์ที่ได้รับการสนับสนุนมี เครื่องมือที่ช่วยในการสังเกตและเก็บรวบรวมข้อมูลได้อย่างถูกต้องแม่นยำมากขึ้น ด้วยเหตุนี้การ ตรวจสอบองค์ความรู้ที่เกิดขึ้นใหม่ในสังคมวิทยาศาสตร์จึงเป็นเรื่องสำคัญ บางครั้งการสังเกตทำให้ ได้ข้อมูลใหม่ที่ความรู้ทางวิทยาศาสตร์ที่มีในขณะนั้นๆไม่สามารถอธิบายได้ ซึ่งในกรณีนี้ ความรู้

ทางวิทยาศาสตร์ที่เป็นปัญหาอาจถูกหักล้าง หรือต้องถูกปรับปรุงใหม่เพื่อให้สามารถอธิบายข้อมูล ใหม่ได้

2. บทบาทของการตีความหมายข้อมูลเพื่อสร้างองค์ความรู้ทาง

วิทยาศาสตร์

หลังจากเก็บรวบรวมข้อมูลที่ได้จากการสังเกต นักวิทยาศาสตร์ต้อง
ตีความหมายข้อมูลที่รวบรวมได้เพื่อสร้างข้อสรุปเป็นองค์ความรู้ทางวิทยาศาสตร์ กระบวนการ
ตีความหมายข้อมูลของนักวิทยาศาสตร์ขึ้นกับทัศนคติ พื้นฐานความรู้ ทักษะ และประสบการณ์
ส่วนตัวของนักวิทยาศาสตร์ รวมถึงสังคมและวัฒนธรรมและทฤษฎีที่เป็นที่ยอมรับในสังคม
วิทยาศาสตร์ ณ ช่วงเวลานั้นๆ ดังนั้นความรู้ทางวิทยาศาสตร์จึงไม่เป็นปรนัยอย่างสมบูรณ์ ในทาง
กลับกัน องค์ความรู้ทางวิทยาศาสตร์สามารถเปลี่ยนแปลงได้ และนักวิทยาศาสตร์ก็สามารถเปลี่ยน
ใจเกี่ยวกับข้อสรุปที่ตนเองสร้างขึ้นได้

หัวข้อรองที่ 2 บริบททางสังคมและวัฒนธรรม

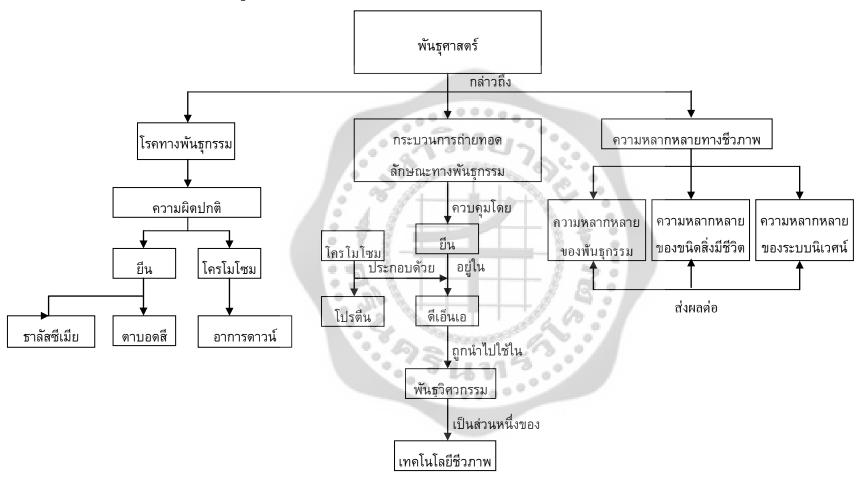
1. อิทธิพลของสังคมและวัฒนธรรมที่มีผลต่อวิทยาศาสตร์

สังคมและวัฒนธรรมส่งผลต่อวิทยาศาสตร์ได้หลายทาง ในทางหนึ่ง สังคมและ วัฒนธรรมกำหนดกรอบความคิดและความเชื่อของนักวิทยาศาสตร์ เช่น ทฤษฏีที่เป็นที่ยอมรับและ เชื่อถือในสังคมวิทยาศาสตร์ในช่วงเวลาหนึ่ง ๆสามารถส่งผลกระทบต่อการสังเกตและตีความหมาย ข้อมูลของนักวิทยาศาสตร์ได้ นอกจากนี้ สังคมและวัฒนธรรมยังเป็นปัจจัยที่กำหนดคุณค่าของการ ดำเนินงานทางวิทยาศาสตร์ว่างานวิจัยเรื่องใดควรได้รับการสนับสนุน และเรื่องใดควรถูกล้มล้างไป ด้วยความกดดันที่ต้องการให้งานวิจัยได้รับการสนับสนุน นักวิทยาศาสตร์อาจเกิดอคติและ ข้อผิดพลาดในการดำเนินงาน ทำให้องค์ความรู้ที่เกิดขึ้นมีความไม่แน่นอน และอาจถูกเปลี่ยนแปลง ได้ในภายหลัง

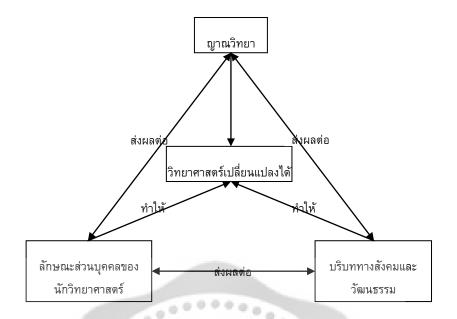
2. อิทธิพลของวิทยาศาสตร์ต่อสังคมและวัฒนธรรม

องค์ความรู้ทางวิทยาศาสตร์สามารถถูกนำไปประยุกต์ใช้เพื่อสร้างประโยขน์และ ประชาชนในสังคมและวัฒนธรรมได้ อย่างไรก็ตาม การประยุกต์ใช้ความรู้ทางวิทยาศาสตร์บางเรื่อง อาจส่งผลที่เราคาดไม่ถึงมาก่อน สังคมจึงต้องเผชิญกับผลสืบเนื่องจากการใช้ความรู้ทาง วิทยาศาสตร์ เพื่อให้ได้รับการสนับสนุนจากสังคม นักวิทยาศาสตร์อาจเกิดอคติในการดำเนินงาน และไม่ยอมเปิดเผยผลทางลบที่ค้นพบในงานวิจัยได้ ดังนั้นบางครั้งความรู้ทางวิทยาศาสตร์จึงอาจ ได้รับผลจากอคติส่งผลให้เกิดความคลาดเคลื่อนในองค์ความรู้ได้

หัวข้อรองที่ 3 ลักษณะส่วนบุคคลของหักวิทยาศาสตร์

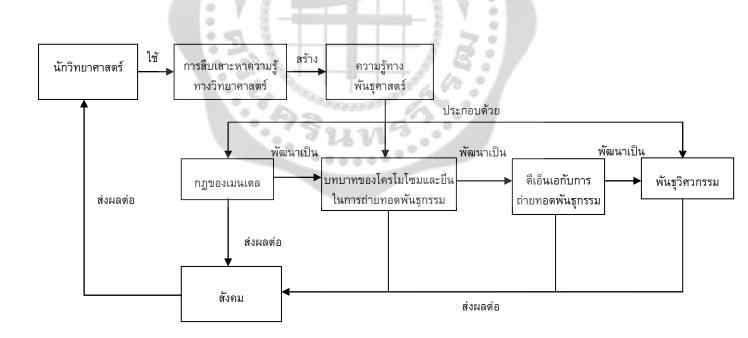

นักวิทยาศาสตร์ก็เป็นเช่นเดียวกับบุคคลทั่วไปที่มีความคิด ความเชื่อ ประสบการณ์ พื้นฐานความรู้ และจริยธรรมส่วนตัว สมบัติส่วนบุคคลของนักวิทยาศาสตร์ส่งผลต่อ ทางดำเนินงานทางวิทยาศาสตร์ เช่น ความเชื่อและพื้นฐานความรู้ที่นักวิทยาศาสตร์คนหนึ่งมี จะ เป็นกรอบการทำงานของเขาในการสังเกตและตีความหมายข้อมูล บางครั้งประสบการณ์และทักษะก็ ส่งผลต่อการทำงานของนักวิทยาศาสตร์ในการใช้เครื่องมือต่าง ๆในการวิจัย แม้ว่าส่วนใหญ่แล้วนัก วิทยาศาสตร์จะต้องดำเนินงานด้วยความระมัดระวัง แต่บางครั้งนักวิทยาสตร์ก็อาจเกิดความผิดพลาด ในการทำงานอันเนื่องมาจากอารมณ์และปัญหาส่วนตัวได้ ลักษณะเฉพาะบุคคลของนักวิทยาศาสตร์ เหล่านี้เป็นอีกมิติหนึ่งที่อาจทำให้ความรู้ทางวิทยาศาสตร์มีความไม่แน่นอนและสามารถ เปลี่ยนแปลงได้

สาระบูรณาการ


พัฒนาการของความรู้ทางพันธุศาสตร์เริ่มต้นมาตั้งแต่สมัยโบราณและมีการพัฒนาอย่าง ต่อเนื่องมาจนถึงปัจจุบัน นักวิทยาศาสตร์ใช้กระบวนการสังเกตและตีความหมายข้อมูลที่ได้จากการ สังเกตปรากฏการณ์ธรรมชาติจนนำมาสู่การสร้างข้อสรุปเกี่ยวกับหน่วยการถ่ายทอดลักษณะทาง พันธุกรรมในสิ่งมีชีวิต ซึ่งปัจจุบันเรียกว่ายืน ความรู้ทางพันธุศาสตร์มีการเปลี่ยนแปลงอยู่ตลอดเวลา ทั้งในลักษณะของการเปลี่ยนแปลงที่มีการยกเลิกข้อความรู้บางอย่างไป และการเปลี่ยนแปลงใน ลักษณะของการเพิ่มเติมรายละเอียดข้อมูลที่มีอยู่

ความรู้ทางพันธุศาสตร์สามารถเปลี่ยนแปลงได้เนื่องจากนักวิทยาศาสตร์ไม่สามารถแยก พื้นฐานส่วนตัวและความเชื่อของสังคมขณะทำการสังเกตและตีความหมายข้อมูลต่างๆได้ ทำให้ นักวิทยาศาสตร์สร้างข้อสรุปได้หลายแนวทาง อย่างไรก็ตามเมื่อเวลาผ่านไปนักวิทยาศาสตร์ ทำการศึกษาและพบหลักฐานเกี่ยวกับยืนมากขึ้น ทำให้องค์ความรู้เกี่ยวกับยืนและการถ่ายทอด ลักษณะทางพันธุกรรมมีความแน่นอนและความน่าเชื่อถือมากขึ้น จนกระทั่งในปัจจุบันความรู้ทาง พันธุศาสตร์มีความเจริญก้าวหน้าไปมากจนกระทั่งนักวิทยาศาสตร์สามารถใช้เทคโนโลยีพันธุ วิศวกรรมในการสร้างสิ่งมีชีวิตให้มีลักษณะตามต้องการได้ และมีการนำความรู้เหล่านี้ไปใช้อย่าง แพร่หลายส่งผลให้เกิดผลกระทบทั้งทางบวกและทางลบต่อสังคม

ผังมโนทัศน์แสดงสาระสำคัญในหลักสูตร



ผังมโนทัศน์พันธุกรรมและการถ่ายทอดลักษณะ

ผังมโนทัศน์ธรรมชาติของวิทยาศาสตร์

0

ผังมโนทัศน์สาระบูรณาการ

มาตรฐานการเรียนรู้และตัวชี้วัดการเรียนรู้

สาระที่ 1 สิ่งมีชีวิตกับกระบวนการดำรงชีวิต

มาตรฐาน ว 1.2 เข้าใจกระบวนการและความสำคัญของการถ่ายทอดลักษณะทาง พันธุกรรม วิวัฒนาการของสิ่งมีชีวิต ความหลากหลายทางชีวภาพ การใช้เทคโนโลยีชีวภาพที่มี ผลกระทบต่อมนุษย์และสิ่งแวดล้อม มีกระบวนการสืบเสาะหาความรู้และจิตวิทยาศาสตร์ สื่อสารสิ่ง ที่เรียนรู้ และนำความรู้ไปใช้ประโยชน์

ตัวชี้วัด	สาระการเรียนรู้แกนกลาง
 สังเกตและอธิบายลักษณะของ โครโมโซมที่มีหน่วยพันธุกรรม หรือยืนในนิวเคลียส 	 เมื่อมองเซลส์ผ่านกล้องจุลทรรศน์จะเห็นเส้นใยเล็กๆ พันกันอยู่ในนิวเคลียส เมื่อเกิดการแบ่งเซลส์ เส้นใย เหล่านี้จะขดสั้นเข้าจนมีลักษณะเป็นท่อนสั้น เรียกว่า โครโมโซม
4:41	- โครโมโซมประกอบด้วยดีเอ็นเอและโปรตีน - ยีนหรือหน่วยพันธุกรรมเป็นส่วนหนึ่งที่อยู่บนดีเอ็นเอ
 อธิบายความสำคัญของสาร พันธุกรรมหรือดีเอ็นเอ และ กระบวนกการถ่ายทอดลักษณะ ทางพันธุกรรม 	 เซลล์หรือสิ่งมีชีวิต มีสารพันธุกรรมหรือดีเอ็นเอที่ ควบคุมลักษณะของการแสดงออก ลักษณะทางพันธุกรรมที่ควบคุมด้วยยืนจากพ่อและแม่ สามารถถ่ายทอดสู่ลูกผ่านทางเซลล์สืบพันธุ์และการ ปฏิสนธิ
 อภิปรายโรคทางพันธุกรรมที่เกิด จากความผิดปกติของยืนและ โครโมโซม และนำความรู้ไปใช้ ประโยชน์ 	 โรคธาลัสซีเมีย ตาบอดสี เป็นโรคทางพันธุกรรม ที่เกิด จากความผิดปกติของยืน กลุ่มอาการดาวน์เป็นความผิดปกติของร่างกาย ซึ่งเกิด จากการที่มีจำนวนโครโมโซมเกินมา ความรู้เกี่ยวกับโรคทางพันธุกรรมสามารถนำไปใช้ใน การป้องกันโรค ดูแลผู้ป่วย และวางแผนครอบครัว
4. สำรวจและอธิบายความ หลากหลายทางชีวภาพใน ท้องถิ่นที่ทำให้สิ่งมีชีวิตดำรงอยู่ ได้อย่างสมดุล	- ความหลากหลายทางชีวภาพที่ทำให้สิ่งมีชีวิตอยู่อย่าง สมดุล ขึ้นอยู่กับความหลากหลายของระบบนิเวศ ความ หลากหลายของชนิดสิ่งมีชีวิต และความหลากหลาย ทางพันธุกรรม

ตัวชี้วัด	สาระการเรียนรู้แกนกลาง
5. อธิบายผลของความหลากหลาย	- การตัดไม้ทำลายป่าเป็นสาเหตุหนึ่งที่ทำให้เกิดความ
ทางชีวภาพที่มีต่อมนุษย์ สัตว์	สูญเสียความหลากหลายทางชีวภาพซึ่งส่งผลกระทบต่อ
พืช และสิ่งแวดล้อม	การดำรงชีวิตมนุษย์ สัตว์ พืช สิ่งแวดล้อม
6. อภิปรายผลของ	- ผลของเทคโนโลยีชีวภาพ มีประโยชน์ต่อมนุษย์ทั้งด้าน
เทคโนโลยีชีวภาพต่อการ	การแพทย์ การเกษตร และอุตสาหกรรม
ดำรงชีวิตของมนุษย์และ	
สิ่งแวดล้อม	

สาระที่ 8 ธรรมชาติของวิทยาศาสตร์และเทคโนโลยี

มาตรฐาน 2 8.1 ใช้กระบวนการทางวิทยาศาสตร์และจิตวิทยาศาสตร์ในการสืบเสาะหา ความรู้ การแก้ปัญหา รู้ว่าปรากฏการณ์ทางธรรมชาติที่เกิดขึ้นส่วนใหญ่มีรูปแบบที่แน่นอน สามารถ อธิบายและตรวจสอบได้ภายใต้เครื่องมือที่มีอยู่ในช่วงเวลานั้นๆ เข้าใจว่าวิทยาศาสตร์ เทคโนโลยี สังคม และสิ่งแวดล้อม มีความเกี่ยวข้องสัมพันธ์กัน

มาตรฐานนี้ประกอบด้วยตัวชี้วัด 9 ข้อ ตัวชี้วัดที่เกี่ยวข้องกับหลักสูตรนี้คือข้อ 5, 8, และ 9 ดังนี้

- 1. ตั้งคำถามที่กำหนดประเด็นหรือตัวแปรที่สำคัญในการสำรวคตรวจสอบ หรือศึกษา ค้นคว้าเรื่องที่สนใจได้อย่างครอบคลุมและเชื่อถือได้
- 2. สร้างสมมติฐานที่สามารถตรวจสอบได้และวางแผนการสำรวจตรวจสอบหลาย ๆวิธี
- 3. เลือกเทคนิคการสำรวจตรวจสอบทั้งเชิงปริมาณและเชิงคุณภาพที่ได้ผลเที่ยงตรงและ ปลอดภัย โดยใช้วัสดุและเครื่องมือที่เหมาะสม
- 4. รวบรวมข้อมูล จัดกระทำข้อมูลเชิงปริมาณและเชิงคุณภาพ
- 5. วิเคราะห์และประเมินความสอดคล้องของประจักษ์พยานกับข้อสรุป ทั้งที่ สนับสนุนหรือขัดแย้งกับสมมติฐาน และความผิดปกติของข้อมูลจากการสำรวจ ตรวจสอบ
- 6. สร้างแบบจำลองหรือรูปแบบที่อธิบายผลหรือแสดงผลของการสำรวจตรวจสอบ

- 7. สร้างคำถามที่นำไปสู่การสำรวจตรวจสอบในเรื่องที่เกี่ยวข้อง และนำความรู้ที่ได้ไปใช้ใน สถานการณ์ใหม่หรืออธิบายเกี่ยวกับแนวคิด กระบวนการ และผลของโครงงานหรือ ชิ้นงานให้ผู้อื่นเข้าใจ
- 8. บันทึกและอธิบายผลการสังเกต การสำรวจ ตรวจสอบคันคว้าเพิ่มเติมจากแหล่ง ความรู้ต่าง ๆให้ได้ข้อมูลที่เชื่อถือได้ และยอมรับการเปลี่ยนแปลงความรู้ที่คันพบ เมื่อมีข้อมูลและประจักษ์พยานใหม่เพิ่มขึ้นหรือโต้แย้งจากเดิม
- 9. จัดแสดงผลงาน เขียนรายงานและ/หรืออธิบายเกี่ยวกับแนวคิด กระบวนการ และผลของโครงงานหรือชิ้นงานให้ผู้อื่นเข้าใจ

ตัวชี้วัดการเรียนรู้เพิ่มเติมเกี่ยวกับธรรมชาติของวิทยาศาสตร์ (สร้างโดยผู้วิจัย)

เพื่อให้การจัดการเรียนการสอนธรรมชาติของวิทยาศาสตร์มีความครอบคลุมและชัดเจนขึ้น ผู้วิจัยสร้างตัวชี้วัดการเรียนรู้ธรรมชาติของวิทยาศาสตร์เพิ่มเติมจากที่กำหนดไว้ในหลักสูตร การศึกษาขั้นพื้นฐาน ดังนี้

- ธพ 1. อธิบายและยกตัวอย่างสาเหตุที่ทำให้ความรู้ทางวิทยาศาสตร์เปลี่ยนแปลง
- ธพ 2. ระบุปัจจัยที่ต้องคำนึงถึงเกี่ยวกับการเปลี่ยนแปลงของความรู้ทางพันธุศาสตร์เมื่อ ต้องตัดสินใจเกี่ยวกับประเด็นปัญหาต่าง ๆที่เกี่ยวข้องกับพันธุศาสตร์
- ธพ 3. อธิบายกระบวนการสร้างความรู้ทางพันธุศาสตร์ที่ต้องอาศัยการสังเกตและการ ตีความหมายหลักฐานเพื่อสร้างข้อสรุปเพื่อใช้อธิบายปรากฏการณ์ธรรมชาติ
- ธพ 4. อธิบายอิทธิพลจากมิติปัจจัยต่าง ๆ ที่ส่งผลให้การสังเกต และการตีความหมายผล การสังเกตของนักวิทยาศาสตร์แต่ละคนอาจมีความแตกต่างกัน
 - ธพ 5. อธิบายและยกตัวอย่างผลของวิทยาศาสตร์ต่อสังคม
 - ธพ 6. อธิบายและยกตัวอย่างอิทธิพลของสังคมต่อวิทยาศาสตร์
- ฐพ 7. ยกตัวอย่างพื้นฐานส่วนบุคคลของนักวิทยาศาสตร์ที่ส่งผลต่อการดำเนินงานทาง วิทยาศาสตร์

จากเป้าหมายของหลักสูตร มาตรฐานการเรียนรู้ และตัวซี้วัดการเรียนรู้ หลักสูตรนี้ได้ กำหนดผลการเรียนรู้ที่คาดหวังดังต่อไปนี้

ตารางแสดงเป้าหมายของหลักสูตร ตัวชี้วัดการเรียนรู้ และผลการเรียนรู้ที่คาดหวัง

เป้าหมายของหลักสูตร	ตัวชี้วัดการเรียนรู้	ผลการเรียนรู้ที่คาดหวังรายกิจกรรมการเรียนรู้	แผนการจัด
			การเรียนรู้
1. เข้าใจธรรมชาติของ	ธพ 1อธิบายและยกตัวอย่างการเปลี่ยนแปลงของความรู้ทางพันธุ	อธิบายว่าความรู้ทางพันธุศาสตร์ที่เป็นที่ยอมรับ ณ ช่วงเวลาหนึ่งๆ อาจ	2-3
องค์ความรู้ทางพันธุ	ศาสตร์จากอดีตจนถึงปัจจุบัน	เปลี่ยนแปลงได้	
ศาสตร์ที่มีความ	ศาสตร์จากอดีตจนถึงปัจจุบัน	อธิบายธรรมชาติที่สามารถเปลี่ยนแปลงได้ของความรู้ทางวิทยาศาสตร์	3-1
น่าเชื่อถือและมีเหตุผล	30.373	เมื่อพบหลักฐานใหม่	
แต่ในขณะเดียวกันก็	No. 30 Marie Barrell	อธิบายลักษณะการเปลี่ยนแปลงขององค์ความรู้ทางพันธุศาสตร์ และปัจจัย	4-1, 5-2
สามารถเปลี่ยนแปลง	1 ° ° 1 + 1	ที่มีผลต่อการพัฒนาความรู้พันธุศาสตร์ตั้งแต่ยุคของเมนเดลจนถึงปัจจุบัน	
ได้			
2. เข้าใจพัฒนาการ	ว 8.1 ข้อ 8 บันทึกและอธิบายผลการสังเกต การสำรวจ	สังเกตและสืบคันข้อมูลเกี่ยวกับการถ่ายทอดทางพันธุกรรมมีลักษณะ	3-4
ของการสร้างองค์	ตรวจสอบคันคว้าเพิ่มเติมจากแหล่งความรู้ต่าง ๆให้ได้ข้อมูลที่	นอกเหนือไปจากกฏของเมนเดล	
ความรู้ทางพันธุศาสตร์	เชื่อถือได้ และยอมรับการเปลี่ยนแปลงความรู้ที่ค้นพบเมื่อมีข้อมูล	อธิบายธรรมชาติที่สามารถเปลี่ยนแปลงได้ของความรู้ทางวิทยาศาสตร์	3-1
ที่มีความเกี่ยวข้องกับ	และประจักษ์พยานใหม่เพิ่มขึ้นหรือโต้แย้งจากเดิม	เมื่อพบหลักฐานใหม่	
มิติปัจจัยหลายมิติ ทั้ง	ธพ 3 อธิบายกระบวนการสร้างความรู้ทางพันธุศาสตร์ที่ต้อง	อธิบายได้ว่าการตั้งปัญหา สังเกต รวบรวมหลักฐาน และตีความหมาย	1-1
ด้านญาณวิทยาของ	อาศัยการสังเกตและการตีความหมายหลักฐานเพื่อสร้างข้อสรุป	หลักฐานเพื่อสร้างข้อสรุป เป็นกระบวนการที่สำคัญในการสืบเสาะหา	
ความรู้ บริบททาง	ในการอธิบายปรากฏการณ์ธรรมชาติ	ความรู้ของเมนเดล	
สังคมและวัฒนธรรม		อธิบายได้ว่ากระบวนการสืบเสาะหาความรู้ของนักวิทยาศาสตร์ผู้ค้นพบกฎ	2-1
และ		ของเมนเดลมีพื้นฐานจากการสังเกตและตีความหมายข้อมูลเพื่อสร้าง	
		ข้อสรุป	

การเรียนรู้ 3-2
3-2
2-2
3-1
2-1, 3-1
1-3
2-3
3-3, 4-2, 5-1
1-3
3

เป้าหมายของหลักสูตร	ตัวชี้วัดการเรียนรู้	ผลการเรียนรู้ที่คาดหวังรายกิจกรรมการเรียนรู้	แผนการจัด การเรียนรู้
ญาณวิทยาของความรู้ บริบททางสังคมและ วัฒนธรรม และพื้นฐาน	ธพ 6 (ต่อ) อธิบายและยกตัวอย่างอิทธิพลของสังคมต่อวิทยาศาสตร์	อธิบายปัจจัยทางสังคมที่ทำให้กฎของเมนเดลได้รับการยอมรับในสังคม วิทยาศาสตร์ ณ ขณะนั้น	2-1
ส่วนบุคคลของ นักวิทยาศาสตร์	2000000	อธิบายอิทธิพลของสังคมที่มีต่อความก้าวหน้าในการวิจัยทางวิทยาศาสตร์	2-1, 2-3
ผู้พัฒนาองค์ความรู้		อธิบายความสำคัญของการทำงานร่วมกันของนักวิทยาศาสตร์ในสังคม วิทยาศาสตร์ในด้านประโยชน์ของการแบ่งปันความรู้ต่อความก้าวหน้าทาง วิทยาศาสตร์	4-1
	ธพ 7 ยกตัวอย่างพื้นฐานส่วนบุคคลของนักวิทยาศาสตร์ที่ส่งผล ต่อการดำเนินงานทางวิทยาศาสตร์	บอกเล่าเรื่องราวเกี่ยวกับประวัติของเมนเดล และเชื่อมโยงพื้นฐานส่วนตัว ของเมนเดลชที่มีผลต่อการทดลองและการคันพบข้อความรู้ทางพันธุ ศาสตร์=	1-1
		อธิบายความสำคัญของพื้นฐาน ประสบการณ์ส่วนตัวของเมนเดล ต่อการ สร้างข้อสรุปเรื่องกระบวนการถ่ายทอดลักษณะทางพันธุกรรม	1-2
3. เข้าใจหลักการ	ว 1.2 ข้อ 1 สังเกตและอธิบายลักษณะของโครโมโซมที่มีหน่วย	อธิบายความหมายของยืน จีโนไทป์ และฟีโนไทป์	2-2
พื้นฐานของพันธุ ศาสตร์	พันธุกรรมหรือยืนในนิวเคลียส	สังเกตและอธิบายลักษณะของโครโมโซมในนิวเคลียส	3-1
	ว 1.2 ข้อ 1 สังเกตและอธิบายลักษณะของโครโมโซมที่มีหน่วย พันธุกรรมหรือยืนในนิวเคลียส	อธิบายบทบาทของโครโมโซมและยืนที่มีต่อกลไกการถ่ายทอดพันธุกรรม	3-1

เป้าหมายของหลักสูตร	ตัวชี้วัดการเรียนรู้	ผลการเรียนรู้ที่คาดหวังรายกิจกรรมการเรียนรู้	แผนการจัด
			การเรียนรู้
3.(ต่อ) ด้าน	ว 1.2 ข้อ 2	ระบุได้ว่า ลักษณะใดเป็นลักษณะเด่น ลักษณะด้อย เมื่อได้รับข้อมูลผลการ	1-1
กระบวนการถ่ายทอด	อธิบายความสำคัญของสารพันธุกรรมหรือดีเอ็นเอ และ	ผสมพันธุ์สิ่งมีชีวิตที่มีลักษณะแตกต่างกัน	
ลักษณะทางพันธุกรรม	กระบวนการถ่ายทอดลักษณะทางพันธุกรรม	ทำนายผลการเกิดลักษณะของสิ่งมีชีวิตในรุ่นลูกได้ เมื่อกำหนดลักษณะที่	1-1
บทบาทของยืน	2000	แตกต่างกันของพ่อแม่ 1 ลักษณะ	
โครโมโซมและดีเอ็นเอ		อธิบายความสัมพันธ์ระหว่างหลักความน่าจะเป็นกับกระบวนการถ่ายทอด	1-2
การประยุกต์ใช้ความรู้		ลักษณะทางพันธุกรรมของเมนเดล	
ทางพันธุศาสตร์	S. S. SEERES	อธิบายความหมายของยีน จีโนไทป์ และฟีโนไทป์ได้	1-2
ประเด็นโต้แย้งที่	2 25 / 1	ใช้กฎของเมนเดลเพื่อคาดคะเนและคำนวณจีโนไทป์และฟีโนไทป์ลักษณะ	2-2
เกี่ยวข้องกับการดัด		ต่าง ๆที่จะเกิดขึ้นในรุ่นลูกเมื่อกำหนดลักษณะที่แตกต่างของพ่อแม่ 1	
แปรพันธุกรรมของ	: Y 3	ลักษณะ	
สิ่งมีชีวิต และความ	. 2 1	อธิบายความหมายและบทบาทของดีเอ็นเอเกี่ยวกับสารพันธุกรรม และ	4-1
สัมพันธระหว่าง	1 10	อธิบายความสัมพันธ์ระหว่างดีเอ็นเอ ยีน และโครโมโซมได้	
พันธุกรรมกับความ	ว1.2 ข้อ 3	อธิบาย และจำแนกประเภทของโรคทางพันธุกรรม	3-3
หลากหลายของ	อภิปรายโรคทางพันธุกรรมที่เกิดจากความผิดปกติของยีนและ	อธิบายความสำคัญของการวางแผนครอบครัวในการป้องกันโรคทาง	3-3
สิ่งมีชีวิต	โครโมโซม และนำความรู้ไปใช้ประโยชน์	พันธุกรรม	
	ว1.2 ข้อ 4	อธิบายความหมายของความหลากหลายทางชีวภาพ และผลของความแปร	5-1
	สำรวจและอธิบายความหลากหลายทางชีวภาพในท้องถิ่นที่ทำให้	ผันทางพันธุกรรมกับความหลากหลายทางชีวภาพ	
	สิ่งมีชีวิตดำรงอยู่ได้อย่างสมดุล		
3.(ต่อ)	ว1.2 ข้อ 5 อธิบายผลของความหลากหลายทางชีวภาพที่มีต่อ	อธิบายผลของความหลากหลายทางชีวภาพต่อมนุษย์ สัตว์ และ	5-1
	มนุษย์ สัตว์ พืช และสิ่งแวดล้อม	สิ่งแวดล้อม	
		อธิบายและยกตัวอย่างผลกระทบจากการกระทำของมนุษย์ต่อความ	
		หลากหลายทางชีวภาพ	

เป้าหมายของหลักสูตร	ตัวชี้วัดการเรียนรู้	ผลการเรียนรู้ที่คาดหวังรายกิจกรรมการเรียนรู้	แผนการจัด
_			การเรียนรู้
	ว1.2 ข้อ 6	อธิบายความหมายของเทคโนโลยีชีวภาพ และพันธุวิศวกรรม	4-2
	อภิปรายผลของเทคโนโลยีชีวภาพต่อการดำรงชีวิตของมนุษย์	ยกตัวอย่างผลกระทบทั้งด้านบวกและด้านลบของการดัดแปรพันธุกรรม	4-2, 4-3, 5-1
	และสิ่งแวดล้อม	สิ่งมีชีวิต	
	0000		
4. คำนึงถึงธรรมชาติ	TW 2	ระบุปัจจัยที่ต้องคำนึงถึงเกี่ยวกับการเปลี่ยนแปลงของความรู้ทางพันธุ	4-3, 5-2
ของวิทยาศาสตร์ใน	ระบุปัจจัยที่ต้องคำนึงถึงเกี่ยวกับการเปลี่ยนแปลงของความรู้ทาง	ศาสตร์เมื่อต้องตัดสินใจเกี่ยวกับประเด็นปัญหาต่างๆที่เกี่ยวข้องกับพันธุ	
การตัดสินใจเกี่ยวกับ	พันธุศาสตร์เมื่อต้องตัดสินใจเกี่ยวกับประเด็นปัญหาต่างๆที่	ศาสตร์และอธิบายความไม่แน่นอนของความรู้ ทางวิทยาศาสตร์ที่เพิ่ง	
ประเด็นปัญหาต่างๆที่	เกี่ยวข้องกับพันธุศาสตร์	- ค้นพบใหม่ในการตัดสินใจ	
เกี่ยวข้องกับความรู้	4:41		
ทางพันธุศาสตร์	: Y 3	1 V .	

แผนการจัดการเรียนรู้

หน่วยการเรียนรู้

หลักสูตรนี้ประกอบด้วยหน่วยการเรียนรู้ 5 หน่วย ใช้เวลาในการจัดการเรียนรู้ 24 คาบ

หน่วยการเรียนรู้	เนื้อหาสาระ	จำนวนคาบ
1. เมนเดลกับตันกำเนิด วิชาพันธุศาสตร์	 กระบวนการทดลองและข้อค้นพบของ เมนเดล ลักษณะเด่น ลักษณะด้อย หลักความน่าจะเป็นกับการถ่ายทอด พันธุกรรม 	5
2. เมื่อข้อคันพบของเมน เดล "ถูกคันพบ"	ความหมายยืน จีโนไทป์ และฟีโนไทป์หลักการคำนวณโอกาสการเกิดลักษณะของสิ่งมีชีวิตในรุ่นลูก	5
3.โครโมโซม หลักฐาน สนับสนุนความคิดเรื่องยืน	 ลักษณะและบทบาทของโครโมโซมในการ ถ่ายทอดพันธุกรรม โครโมโซมเพศ การถ่ายทอดพันธุกรรมที่ไม่เป็นไปตาม แบบแผนของเมนเดล ลักษณะเด่นไม่ สมบูรณ์ การแสดงออกลักษณะร่วม ลักษณะที่ได้รับอิทธิพลจากสภาพแวดล้อม โรคทางพันธุกรรม 	6
4.การคันพบดีเอ็นเอสู่ กุญแจไขปริศนาพันธุ ศาสตร์	- โครงสร้างและหน้าที่ของดีเอ็นเอ - เทคโนโลยีสมัยใหม่ทางพันธุศาสตร์	4
5.พันธุศาสตร์กับชีวิตและ สิ่งแวดล้อม	ความหลากหลายทางชีวภาพสรุปพัฒนาการและการเปลี่ยนแปลงความรู้ทางพันธุศาสตร์	4
	รวม	24

กระบวนการจัดการการเรียนรู้

กระบวนการจัดการเรียนรู้เพื่อพัฒนานักเรียนให้มีความเข้าใจในธรรมชาติและข้อจำกัด ของวิทยาศาสตร์ควบคู่ไปกับการเรียนรู้พันธุศาสตร์ใช้ประวัติการค้นพบทางวิทยาศาสตร์เป็น กระบวนกรหลักในการบูรณาการ และให้ความสำคัญของการเสนอแนวคิดธรรมชาติของ วิทยาศาสตร์ให้นักเรียนอย่างชัดเจน ควบคู่กับการเปิดโอกาสให้นักเรียนสะท้อนความคิดที่มีต่อ ธรรมชาติของวิทยาศาสตร์ และการนำความรู้ทั้งในเรื่องของธรรมชาติของวิทยาศาสตร์และพันธุศาสตร์ไปใช้ประกอบการตัดสินใจประเด็นปัญหาต่างๆที่เกี่ยวข้องกับวิทยาศาสตร์

การจัดการเรียนรู้ตามหลักสูตรนี้ใช้การนำเสนอเนื้อหาสาระพันธุศาสตร์และธรรมชาติของ วิทยาศาสตร์ไปพร้อม ๆกันผ่านเรื่องราวประวัติการค้นพบความรู้ทางพันธุศาสตร์นับตั้งแต่สมัยของ เกรเกอร์ เมนเดล บิดาแห่งวิชาพันธุศาสตร์จนถึงปัจจุบัน โดยแบ่งช่วงเวลาสำคัญในประวัติศาสตร์ ออกเป็น 4 ช่วงตามหน่วยการเรียนรู้ที่ 1-4 และหน่วยการเรียนรู้ที่ 5 ซึ่งเป็นหน่วยการเรียนรู้สุดท้าย เป็นการใช้ความรู้ทางพันธุศาสตร์ในการอธิบายเกี่ยวกับธรรมชาติและสิ่งแวดล้อม และสรุป พัฒนาการของความรู้ทางพันธุศาสตร์ในหน่วยก่อนหน้า ดังแสดงในตาราง

ตารางแสดงเนื้อหาเกี่ยวกับเรื่องราวในประวัติศาสตร์ สาระพันธุศาสตร์ และธรรมชาติของวิทยาศาสตร์ของแต่ละหน่วยการเรียนรู้

หน่วย การ	เรื่องราวในประวัติศาสตร์	สาระพันธุศาสตร์	ธรรมชาติของวิทยาศาสตร์
เรียนรู้ 1	ปีค.ศ. 1865 เมนเดลตีพิมพ์ผลงานการวิจัยจากการ ทดลองผสมพันธุ์ตันถั่วต่างลักษณะและพบแบบแผน ของการถ่ายทอดลักษณะแต่ไม่ได้รับความสนใจจาก สังคมวิทยาศาสตร์	 กระบวนการทดลองและข้อค้นพบ ของเมนเดล ลักษณะเด่น ลักษณะด้อย หลักความน่าจะเป็นกับการถ่ายทอด พันธุกรรม 	 ทักษะและประสบการณ์ของนักวิทยาศาสตร์มีผลต่อการทำงาน การสังเกต และการตี ความหมายเป็นพื้นฐานสำคัญของการ สร้างข้อสรุป อิทธิพลของสังคมกับความเจริญกัาวหน้าทางวิทยาศาสตร์ จุดมุ่งหมายของวิทยาศาสตร์ในการการหาแบบแผนของ ธรรมชาติ
2	ปี ค.ศ. 1900 ผลงานของเมนเดลถูกค้นพบและ ตีความใหม่โดยนักวิทยาศาสตร์คนอื่น ๆ ก่อให้เกิด คำอธิบายเรื่องกลไกการถ่ายทอดลักษณะ ซึ่งถูก นำไปใช้อธิบายปรากฏการณ์ต่าง ๆอย่างแพร่หลาย จนทำให้เกิดกระแสแนวคิดในการปรับปรุงพันธุ์ มนุษย์หรือยูจีนิคส์	 ความหมายยืน จีโนไทป์ และฟิโน ไทป์ หลักการคำนวณโอกาสการเกิด ลักษณะของสิ่งมีชีวิตในรุ่นลูก 	 ทักษะและประสบการณ์ของนักวิทยาศาสตร์มีผลต่อการทำงาน การสังเกต และการตี ความหมายเป็นพื้นฐานสำคัญของการ สร้างข้อสรุป ความรู้ทางวิทยาศาสตร์เปลี่ยนแปลงได้เมื่อมีข้อมูลใหม่ อิทธิพลของวิทยาศาสตร์ต่อสังคม / อิทธิพลของสังคมต่อ วิทยาศาสตร์ในช่วงกระแสนิยมแนวคิดปรับปรุงพันธุ์มนุษย์
3	ปีค.ศ. 1915 โทมัส ฮันท์ มอร์แกน ทำการทดลอง ผสมพันธุ์แมลงหวี่และพบแบบแผนการถ่ายทอด ลักษณะที่แตกต่างจากแบบแผนของเมนเดล นำไปสู่ การเชื่อมโยงข้อคันพบที่ได้กับความรู้เรื่องโครโมโซม ซึ่งถูกคันพบและพัฒนามาก่อนหน้า จนทำให้ทราบ ว่ายืน มี	 ลักษณะและบทบาทของโครโมโซม ในการถ่ายทอดพันธุกรรม โครโมโซมเพศ การถ่ายทอดพันธุกรรมที่ไม่เป็นไป ตามแบบแผนของเมนเดล ลักษณะเด่น 	 อิทธิพลของทฤษฎีที่เป็นที่ยอมรับในสังคมกับการทำงานของ นักวิทยาศาสตร์ ความน่าเชื่อถือของความรู้ ทางวิทยาศาสตร์จากการตรวจสอบ ซ้ำ ความเปลี่ยนแปลงได้ของความรู้จากการพบหลักฐานใหม่ กระบวนการสังเกตและตีความหมายเพื่อสร้างข้อสรุปทาง

หน่วย	เรื่องราวในประวัติศาสตร์	สาระพันธุศาสตร์	ธรรมชาติของวิทยาศาสตร์
การ			
เรียนรู้			
3	 ตำแหน่งบนโครโมโซม และการถ่ายทอดลักษณะบาง	- ไม่สมบูรณ์ การแสดงออก	วิทยาศาสตร์
	ประการของสิ่งมีชีวิต ไม่เป็นไปตามแบบแผนของ	ลักษณะร [่] วม ลักษณะที่ได้รับอิทธิพล	
(ต่อ)	เมนเดล	จากสภาพแวดล้อม	
		- โรคทางพันธุกรรม	
4	ปีค.ศ.1950 การศึกษาทางพันธุศาสตร์เป็นไปใน	- โครงสร้างและหน้าที่ของดีเอ็นเอ	- อิทธิพลของสังคมต่อวิทยาศาสตร์ ในการสนับสนุนการวิจัยที่
	ระดับโมเลกุล นักวิทยาศาสตร์พบว่าดีเอ็นเอเป็นสาร	- เทคโนโลยีสมัยใหม่ทางพันธุศาสตร์	เชื่อว่าจะเอื้อประโยชน์ต่อมนุษย์และสังคม
	้ ที่ทำหน้าที่ถ่ายทอดพันธุกรรมโดยเจมส์ วัตสันและฟ	- พันธุศาสตร์กับความหลากหลายของ	- บทบาทของสังคมวิทยาศาสตร์ต่อพัฒนาการของความรู้
	รานซิส คริก เป็นผู้ค้นพบโครงสร้างโมเลกุลของดีเอ็น	สิ่งมีชีวิต	- ความสำคัญของหลักฐานต่อการสร้างความรู้ทางวิทยาศาสตร์
	เอจากการสร้างแบบจำลองโดยใช้ข้อมูลจากภาพถ่าย	7 3	V :
	ดีเอ็นเอที่โรซาลิน แฟรงคลินถ่ายโดยใช้รังสีเอ็กซ์		7:10
	นำไปสู่การค้นพบรหัสการควบคุมลักษณะต่างๆของ		8:/
	สิ่งมีชีวิต เป็นจุดเริ่มต้นของพันธุศาสตร์สมัยใหม่และ	3	(10 °
	เทคโนโลยีซึ่งทำให้มนุษย์สามารถควบคุมลักษณะ	o & Bassagas	
	ของสิ่งมีชีวิตให้แตกต่างจากธรรมชาติ	531315	
5	ความรู้เกี่ยวกับพันธุศาสตร์ นอกจากจะใช้อธิบาย	- ความหลากหลายทางชีวภาพ	- ความรู้ทางวิทยาศาสตร์เมื่อได้รับการเผยแพร่จะถูกนำไปใช้
	เกี่ยวกับกระบวนการถ่ายทอดลักษณะของสิ่งมีชีวิต		อย่างกว้างขวาง
	จากพ่อแม่สู่ลูกแล้ว ยังถูกใช้ในการอธิบายเกี่ยวกับ		
	ธรรมชาติและสิ่งแวดล้อม		
	TO G GOT I A I DOD O J O DO D A A I D J T ON		

แผนการวัดและประเมินผล

ความรู้ ความเข้าใจ และความสามารถของนักเรียนที่วัดและประเมินประกอบด้วย

- 1. ความเข้าใจในสาระสำคัญทางพันธุศาสตร์ เป็นการวัดและประเมินความสามารถของนักเรียน ในการระลึกถึง อธิบายความ แปลความ ตีความ ขยายความ ลงข้อสรุปเกี่ยวกับเนื้อหาสาระและหลักการ เรื่องพันธุกรรมและการถ่ายทอดลักษณะ ตามตัวชี้วัดการเรียนรู้ของหลักสูตรที่กำหนดไว้ในมาตรฐานและ สาระการเรียนรู้ข้างต้น
- 2. ความเข้าใจในธรรมชาติของวิทยาศาสตร์ เป็นการวัดและประเมินความสามารถของนักเรียน ในการการระลึกถึง อธิบายความ แปลความ ตีความ ขยายความ ลงข้อสรุปเกี่ยวกับธรรมชาติของ วิทยาศาสตร์ในด้านพัฒนาการของความรู้ การเปลี่ยนแปลงได้ของความรู้ และมิติปัจจัยต่างๆที่มีผลต่อการ ดำเนินงานทางวิทยาศาสตร์ตามตัวชี้วัดการเรียนรู้ของหลักสูตรที่กำหนดไว้ในมาตรฐานและสาระการ เรียนรู้ข้างต้น
- 3. ความสามารถในการตัดสินใจในประเด็นปัญหาที่เกี่ยวข้องกับวิทยาศาสตร์ คือการวัดและ ประเมินความสามารถในการคิดใคร่ครวญ ไตร่ตรอง ถึงธรรมชาติของวิทยาศาสตร์ที่สามาถเปลี่ยนแปลงได้ และมิติปัจจัยต่างๆที่มีผลต่อการพิจารณาความน่าเชื่อถือของความรู้ทางวิทยาศาสตร์ในการตกลงใจที่จะ ปฏิบัติอย่างใดอย่างหนึ่งเมื่อเผชิญกับสถานการณ์หรือปัญหาที่เกี่ยวข้องกับวิทยาศาสตร์

วิธีการที่ใช้ในการวัดและประเมินผลการเรียนรู้ได้แก่

- 1. การทดสอบ
- 2. การตรวจผลงานนักเรียน

การวัดและประเมินผลการเรียนรู้จะคำเนินการควบคู่ไปกับการจัดกระบวนการเรียนรู้ ซึ่งแบ่ง ออกเป็น 3 ระยะคือ

- 1. ก่อนเรียน เป็นการวัดและประเมินความรู้ความสามารถพื้นฐานของนักเรียนก่อนเรียนด้วย หลักสูตจรบุรณาการธรรมชาติของวิทยาศาสตร์
- 2. ระหว่างเรียน เป็นการวัดและประเมินความรู้ความสามารถของนักเรียนระหว่างขั้นตอนการ จัดกระบวนการเรียนรู้จากการสังเกตพฤติกรรมการทำกิจกรรม การตอบคำถามในห้องเรียน การตอบ คำถามและการเขียนสะท้อนความคิดจากใบงาน เพื่อติดตามว่าการเรียนรู้ของนักเรียนเป็นไปตามที่กำหนด

ไว้ และเพื่อปรับปรุงการจัดกิจกรรมการเรียนรู้ให้สอดคล้องกับความสามารถของนักเรียน เพื่อให้การจัดการ เรียนรู้เกิดประสิทธิผลต่อนักเรียน

3. หลังเรียน เป็นการวัดและประเมินผลการเริ่นยรู้ของนักเรียนหลังเรียนจบหลักสูตรบูราณาการ ธรรมชาติของวิทยาศาสตร์ เพื่อใช้เป็นเครื่องบ่งชี้คุณภาพของการจัดการเรียนรู้ และวินิจฉัยผลการเรียน ของนักเรียน

แผนการจัดการเรียนรู้รายคาบตามหลักสูตรบูรณาการธรรมชาติของวิทยาศาสตร์ รายวิชาวิทยาศาสตร์พื้นฐาน หน่วยการเรียนรู้ พันธุกรรมและการถ่ายทอดลักษณะ

คำอธิบาย

แผนการจัดการเรียนรู้นี้ได้รับการจัดทำขึ้นให้สอดคล้องกับหลักสูตรบูรณาการธรรมชาติของ วิทยาศาสตร์และพันธุศาสตร์สำหรับนักเรียนมัธยมศึกษาตอนตัน โดยเน้นการนำเสนอเนื้อหา วิทยาศาสตร์ผ่านประวัติศาสตร์เพื่อสะท้อนธรรมชาติของวิทยาศาสตร์ในมิติปัจจัยด้านญาณวิทยา บริบท ทางสังคมและวัฒนธรรม ตลอดจนคุณสมบัติส่วนบุคคลของนักวิทยาศาสตร์ที่ส่งผลต่อการสร้างและ พัฒนาองค์ความรู้ทางวิทยาศาสตร์เพื่อให้นักเรียนเรียนรู้ว่าวิทยาศาสตร์เป็นความรู้ที่สามารถตรวจสอบ ได้และน่าเชื่อถือ แต่ในขณะเดียวกันความรู้ทางวิทยาศาสตร์สามารถเปลี่ยนแปลงได้เนื่องจากมิติปัจจัย ดังกล่าวข้างต้น

เนื้อหาสาระวิทยาศาสตร์ที่ปรากฏในหลักสูตรนี้คือเนื้อหาสาระด้านพันธุศาสตร์จากหน่วยการ เรียนรู้พันธุกรรมและการถ่ายทอดลักษณะสำหรับนักเรียนชั้นมัธยมศึกษาตอนตัน ประกอบด้วย 5 หน่วย การเรียนรู้ย่อยดังนี้

- 1. เมนเดลกับต้นกำเนิดวิชาพันธุศาสตร์
- 2. เมื่อข้อค้นพบของเมนเดล "ถูกค้นพบ"
- 3. โครโมโซม หลักฐานสนับสนุนความคิดเรื่องยืน
- 4. การค้นพบดีเอ็นเอสู่กุญแจไขปริศนาพันธุศาสตร์
- 5. พันธุศาสตร์กับชีวิตและสิ่งแวดล้อม

หน่วยการเรียนรู้ย่อยที่ 1 เมนเดลกับต้นกำเนิดวิชาพันธุศาสตร์

ในหน่วยการเรียนรู้นี้นักเรียนจะได้เรียนรู้เกี่ยวกับชีวประวัติของเมนเดล การทดลองผสมพันธุ์ ข้ามลักษณะในต้นถั่ว และผลการทดลองซึ่งต่อมากลายความรู้รากฐานของวิชาพันธุศาสตร์ เรียนรู้ผล ของพื้นฐานประสบการณ์ส่วนตัวของนักวิทยาศาสตร์ต่อการทำงานผ่านชีวประวัติของเมนเดล กระบวนการตั้งปัญหา สังเกต การทดลองและสร้างข้อสรุปทางวิทยาศาสตร์ผ่านการทดลองของเมนเดล และอิทธิพลของสังคมต่อความก้าวหน้าทางวิทยาศาสตร์ผ่านเรื่องราวความล้มเหลวในการยอมรับข้อ ค้นพบของเมนเดล

จุดประสงค์

เมื่อเรียนจบหน่วยการเรียนรู้ย่อยนี้แล้ว นักเรียนสามารถ

- 1. บอกเล่าเรื่องราวเกี่ยวกับประวัติของเมนเดล และเชื่อมโยงพื้นฐานส่วนตัว ความรู้ และ ทักษะของเมนเดลที่ได้รับการฝึกฝนที่มีผลต่อการทดลองและการค้นพบข้อความรู้ทางพันธุ ศาสตร์ของเมนเดลได้
- 2. อธิบายขั้นตอนการดำเนินงานที่เมนเดลใช้ในการสร้างองค์ความรู้ทางพันธุศาสตร์
- 3. อธิบายหลักการถ่ายทอดลักษณะของต้นถั่วที่เมนเดลพบ และใช้หลักการถ่ายทอดลักษณะ คำนวณลักษณะของถั่วรุ่นลูกได้
- 4. อธิบายปัจจัยทางสังคมที่ส่งผลให้ข้อคันพบของเมนเดลไม่ได้รับการยอมรับในสังคม วิทยาศาสตร์ขณะนั้น

แผนการจัดการเรียนรู้ที่ 1-1

เรื่อง ประวัติของเมนเดลและการทดลองซึ่งเป็นจุดเริ่มต้นของพันธุศาสตร์
กลุ่มสาระวิทยาศาสตร์ ชั้นมัธยมศึกษาปีที่ 3
หน่วยการเรียนรู้ที่ 1 เรื่อง เมนเดลกับต้นกำเนิดวิชาพันธุศาสตร์ เวลา 3 คาบ

สาระที่ 1 สิ่งมีชีวิตกับกระบวนการดำรงชีวิต

มาตรฐาน ว 1.2 เข้าใจกระบวนการและความสำคัญของการถ่ายทอดลักษณะทางพันธุกรรม วิวัฒนาการของสิ่งมีชีวิต ความหลากหลายทางชีวภาพ การใช้เทคโนโลยีชีวภาพที่มีผลกระทบต่อมนุษย์ และสิ่งแวดล้อม มีกระบวนการสืบเสาะหาความรู้และจิตวิทยาศาสตร์ สื่อสารสิ่งที่เรียนรู้ และนำความรู้ไป ใช้ประโยชน์

มาตรฐาน ว 8.1 ใช้กระบวนการทางวิทยาศาสตร์และจิตวิทยาศาสตร์ในการสืบเสาะหาความรู้ การ แก้ปัญหา รู้ว่าปรากฏการณ์ทางธรรมชาติที่เกิดขึ้นส่วนใหญ่มีรูปแบบที่แน่นอน สามารถอธิบายและ ตรวจสอบได้ภายใต้เครื่องมือที่มีอยู่ในช่วงเวลานั้นๆ เข้าใจว่าวิทยาศาสตร์และเทคโนโลยี สังคม และ สิ่งแวดล้อมมีความเกี่ยวข้องสัมพันธ์กัน

ตัวชี้วัดที่

- ว 1.2 ข้อ 2 อธิบายความสำคัญของสารพันธุกรรมหรือดีเอ็นเอ และกระบวนการที่ถ่ายทอด ลักษณะทางพันธุกรรม
- ธพ. 3 อธิบายกระบวนการสร้างความรู้ทางพันธุศาสตร์ที่ต้องอาศัยการสังเกตและการ ตีความหมายเพื่อสร้างข้อสรุปในการอธิบายปรากฏการณ์ธรรมชาติ
- ธพ. 7 ยกตัวอย่างพื้นฐานส่วนบุคคลของนักวิทยาศาสตร์ที่ส่งผลต่อการดำเนินงานทาง วิทยาศาสตร์

แนวคิดหลัก

พื้นฐาน การศึกษาและประสบการณ์ของเมนเดลนำไปสู่การทดลองผสมพันธุ์ต้นถั่วที่มีลักษณะ ต่างกัน การสังเกตผลการทดลองนำไปสู่การตีความหมายเกี่ยวกับอัตราส่วนที่แน่นอนของการเกิด ลักษณะในรุ่นลูก และหน่วยควบคุมการถ่ายทอดลักษณะของสิ่งมีชีวิต

จุดประสงค์การเรียนรู้ เพื่อให้นักเรียนสามารถ

- 1. บอกเล่าเรื่องราวเกี่ยวกับประวัติของเมนเดล และเชื่อมโยงพื้นฐานส่วนตัว ความรู้ และ ทักษะของเมนเดลได้รับการฝึกฝนที่มีผลต่อการทดลองและการค้นพบข้อความรู้ทางพันธุ ศาสตร์ของเมนเดลได้
- 2. อธิบายได้ว่าการตั้งปัญหา สังเกต รวบรวมหลักฐาน และตีความหมายหลักฐานเพื่อสร้าง ข้อสรุป เป็นกระบวนการที่สำคัญในการสืบเสาะหาความรู้ของเมนเดล
- 3. ระบุได้ว่า ลักษณะใดเป็นลักษณะเด่น ลักษณะด้อย เมื่อได้รับข้อมูลผลการผสมพันธุ์ สิ่งมีชีวิตที่มีลักษณะแตกต่างกัน
- 4. ทำนายผลการเกิดลักษณะของสิ่งมีชีวิตในรุ่นลูกได้ เมื่อกำหนดลักษณะที่แตกต่างกันของ พ่อแม่ 1 ลักษณะ

สาระสำคัญ

การทดลองและข้อสรุปของเมนเดล

การทดลองที่เป็นรากฐานของการศึกษาพันธุศาสตร์คือ การทดลองผสมพันธุ์ตันถั่วของ เกร เกอร์ โจฮาน เมนเดล ซึ่งได้ข้อสรุปจากการทดลองดังนี้

- 1. เมื่อผสมระหว่างต้นถั่วที่มีลักษณะต่างกัน ลักษณะหนึ่งจะหายไปในลูกรุ่นที่หนึ่งเสมอ แต่ จะปรากฏอีกครั้งในลูกรุ่นที่สอง โดยมีอัตราส่วนแน่นอน
- 2. สิ่งมีชีวิตมีหน่วยควบคุมลักษณะที่อยู่เป็นคู่ โดยลักษณะหนึ่งสามารถข่มอีกลักษณะหนึ่งได้ เรียกว่าลักษณะเด่น ในทางตรงกันข้าม อีกลักษณะหนึ่งสามารถถูกข่มไม่ให้แสดงออก เรียกว่า ลักษณะ ด้อย

พื้นฐานส่วนบุคคลของของเมนเดลกับกระบวนการสืบเสาะหาความรู้

- 1. กระบวนการสำคัญในการสืบเสาะหาความรู้ของเมนเดล คือการสังเกตและรวบรวมข้อมูล จากการสังเกตตันถั่ว และการตีความหมายข้อมูลที่รวบรวมได้เพื่อนำไปสู่ข้อสรุป
- 2. วิธีการทดลองและการสร้างข้อสรุปของเมนเดลมีผลมาจากพื้นฐานส่วนตัวที่เติบโตมาใน ครอบครัวของเกษตรกร การศึกษาเรื่องการผลิตพืชพันธุ์ผสม และหลักความน่าจะเป็นที่เมนเดลได้ ศึกษาในมหาวิทยาลัย

แนวการจัดกระบวนการเรียนรู้

ข**ั้นสร้างความส**นใจ

- 1. ครูให้นักเรียนมองดูภาพของคู่ชาย-หญิง 3-4 คู่ที่มีเชื้อชาติและลักษณะทางกายภาพแตกต่างกัน อย่างชัดเจน และภาพเด็กจำนวนเท่ากันบนกระดาน และให้นักเรียนจับคู่ภาพชาย-หญิง กับภาพ เด็กโดยตั้งคำถามว่าเด็กแต่ละคนน่าจะเป็นลูกของพ่อแม่คู่ใด นักเรียนทราบได้อย่างไร
- 2. ครูนำเข้าสู่บทเรียนว่ามนุษย์เราตั้งข้อสังเกตมาตั้งแต่สมัยโบราณแล้วว่า ลูกมักมีลักษณะคล้าย กับพ่อแม่ แต่ก็ไม่สามารถอธิบายได้ว่าเพราะเหตุใด จนนักวิทยาศาสตร์พยายามสืบเสาะหา ความรู้เพื่ออธิบายกลไกการถ่ายทอดลักษณะพันธุกรรมของสิ่งมีชีวิต ซึ่งนักเรียนจะได้เรียนรู้ว่า นักวิทยาศาสตร์ตั้งแต่สมัยก่อนจนถึงยุคปัจจุบันได้ศึกษาและอธิบายเกี่ยวกับกลไกการถ่ายทอด ลักษณะทางพันธุกรรมว่าอย่างไร

ขั้นดำเนินกิจกรรม

- 1. ครูแจกใบงานที่ 1 ซึ่งแสดงข้อคำถามเกี่ยวกับชีวิตและประวัติการศึกษาของเมนเดลเพื่อให้ นักเรียนศึกษาคำถามและใช้เป็นแนวทางในการจับใจความเนื้อหาจากวีดิทัศน์และเอกสาร เกี่ยวกับชีวประวัติของเมนเดล
- 2. นักเรียนชมวีดิทัศน์และอ่านชีวประวัติของเมนเดลตั้งแต่วัยเด็กจนกระทั่งทำงานและเริ่มทำการ ทดลองผสมพันธุ์ตันถั่ว จุดมุ่งหมายของการชมวีดิทัศน์และการอ่านเพื่อให้ข้อมูลนักเรียนเรื่อง ประวัติส่วนตัว การศึกษา และคุณลักษณะของเมนเดลที่ส่งผลต่อการทดลองผสมพันธุ์ตันถั่วต่าง ลักษณะซึ่งนักเรียนจะได้เรียนรู้ในขั้นต่อไป
- 3. นักเรียนเขียนสรุปใจความสำคัญเกี่ยวกับประวัติส่วนตัว การศึกษา และประสบการณ์ทำงานของ เมนเดลลงในใบงานที่ 1
- 4. ครูตั้งคำถามนำไปสู่การเรียนรู้เกี่ยวกับกระบวนการสืบเสาะหาความรู้ทางวิทยาศาสตร์ โดย กำหนดปัญหาว่า เมนเดลต้องการศึกษาผลของการผสมพันธุ์ต้นถั่วที่มีลักษณะต่างกัน ให้ นักเรียนออกแบบการทดลองเพื่อช่วยแก้ปัญหาให้เมนเดล ตามโจทย์ที่ให้ไว้ในใบงานที่ 2 และ นำเสนอผลการออกแบบการทดลองบนกระดาษฟลิปชาร์ตที่ครูแจกให้กลุ่มละ 1 แผ่น
- 5. เมื่อนักเรียนออกแบบการทดลองเสร็จแล้วให้ติดไว้บนผนังที่ว่างรอบห้อง และให้นักเรียนผลัดกัน ชมผลงานการออกแบบการทดลองของเพื่อนร่วมชั้น
- 6. ครูกระตุ้นให้นักเรียนทั้งห้องช่วยกันวิเคราะห์ความถูกต้องของการกำหนดตัวแปร ความเป็นไป ได้ในการทำการทดลอง และความเหมาะสมของวิธีการและตารางบันทึกผลการทดลองของ นักเรียนแต่ละกลุ่ม
- 7. ครูตั้งคำถามนาให้นักเรียนช่วยกันสรุปกระบวนการที่สำคัญในการสืบเสาะหาความรู้ทาง วิทยาศาสตร์ว่าได้แก่การตั้งปัญหา การสังเกต การรวบรวมหลักฐานและตีความหมายข้อมูลเพื่อ สร้างข้อสรุป

- 8. ครูเล่าเรื่องราวเกี่ยวกับวิธีการทดลองและผลการทดลองของเมนเดล จากนั้นให้นักเรียนสรุปผล การทดลองจากข้อมูลผลการทดลองผสมพันธุ์ต้นถั่วต่างลักษณะ ในขั้นนี้ให้ครูแจกใบงานที่ 2 ตอนที่ 2ประกอบการทำกิจกรรมดังนี้
 - 4.1 นักเรียนกลุ่มเลขคี่ได้รับตารางแสดงผลการทดลองของเมนเดล
 - 4.2 นักเรียนกลุ่มเลขคู่ได้รับตารางแสดงผลการทดลองของเมนเดลควบคู่กับเอกสารอธิบาย วิธีการหากัตราส่วนอย่างต่ำ
- 9. ให้นักเรียนทุกกลุ่มนำเสนอการสรุปผลการทดลองด้วยกระดาษฟลิปชาร์ต และให้เวลานักเรียนได้ ศึกษาผลงานของเพื่อนต่างกลุ่ม
- 10. ครูตั้งคำถามเพื่อชี้ให้เห็นว่ามีข้อแตกต่างระหว่างการสรุปผลของนักเรียนกลุ่มเลขคี่และกลุ่มเลขคู่ โดยกลุ่มเลขคู่มีการหาอัตราส่วนของผลการผสมพันธุ์ตันถั่วทำให้เห็นแบบแผนของผลการ ทดลองว่าลูกรุ่นที่สองได้อัตราส่วนระหว่างลักษณะเป็น 3 : 1
- 11. ครูอธิบายข้อสรุปที่เมนเดลสร้างขึ้นเพื่ออธิบายผลการทดลองผสมพันธุ์ตันถั่วต่างลักษณะและ ความหมายของพันธุ์แท้ พันธุ์ผสม ลักษณะเด่น ลักษณะด้อย

ขั้นสรุปกิจกรรม

ครูให้นักเรียนอธิบายความเข้าใจที่มีต่อบทเรียนโดยตอบคำถามต่อไปนี้

- 1) การที่นักเรียนทุกกลุ่มศึกษาเรื่องเดียวกัน และลงข้อสรุปจากผลการทดลองชุดเดียวกัน แต่การสรุปผลเหมือนกันหรือไม่ เพราะเหตุใด
- 2) ความรู้เรื่องการหาอัตราส่วนช่วยนักเรียนในการสรุปข้อมูลอย่างไร
- 3) หากนักวิทยาศาสตร์สองคนมีพื้นฐานการศึกษาและประสบการณ์ต่างกัน นักเรียนคิดว่า นักวิทยาศาสตร์สองคนจะทำการสืบเสาะหาความรู้และได้ข้อสรุปแตกต่างกันหรือไม่
- 4) จากประวัติของเมนเดล นักเรียนคิดว่าสมบัติของเมนเดลทั้งเรื่องชีวิตส่วนตัว การศึกษา ประสบการณ์ทำงาน เรื่องใดบ้างที่ช่วยให้เมนเดลสรุปผลการทดลองในลักษณะดังกล่าว
- 5) โดยสรุป ขั้นตอนสำคัญในการดำเนินงานของเมนเดลมีอะไรบ้าง

ขั้นประเมินผล

- 1. ประเมินความรู้ความเข้าใจของนักเรียนเรื่องการออกแบบการทดลอง จากผลงานการออกแบบ การทดลองของนักเรียนที่นำเสนอในห้องเรียน
- 2. ประเมินจากการตอบคำถามในใบงาน

สื่อการเรียนรู้

- 1. ใบความรู้หน้า 3-10
- 2. ใบงานที่ 1- 2
- 3. แผ่นใสและเครื่องฉายข้ามศีรษะ สำหรับฉายภาพและเนื้อหาประกอบการอธิบาย

4. วีดิทัศน์เรื่อง Mendel form the Garden to Genome (มีบทบรรยายภาษาไทย)

วัสดุ/อุปกรณ์

- 1. กระดาษฟลิปชาร์ตสำหรับนำเสนอผลการออกแบบการทดลอง 1 แผ่น ต่อนักเรียน 1 กลุ่ม
- 2. ปากกาเมจิก 2 สี ต่อนักเรียน 1 กลุ่ม
- 3. เทปกาว หรืออุปกรณ์ยึดติดอเนกประสงค์สำหรับติดกระดาษฟลิปชาร์ตบนฝาผนัง

ใบงานที่ 1 เรื่อง มารู้จักเมนเดลกันเถอะ ระดับชั้นมัธยมศึกษาปีที่ 3

٥				
รหล	็วิชา	1	221	1 1
0 1 1 61	וענו	đ	JJ 1	v

รายวิชา วิทยาศาสตร์ 9 กลุ่มสาระการเรียนรู้วิทยาศาสตร์

ชื่อ นามสกุล	ชั้น ม. 3/ เลขที่
กลุ่มที่ ชื่อกลุ่ม	วันที่/
ให้นักเรียนชมวีดิทัศน์และอ่านจับใจความประวั	ัติของเกรเกอร์ เมนเดล บิดาแห่งพันธุศาสตร์ และเติมคำ
ลงในช่องว่างให้สมบูรณ์	ALTICATION OF STATE TALEBOAY WITH INALS PPASSANTI
ประวัติส่วนตัวของเมนเดล	ประวัติการศึกษา
ชื่อเต็ม	เรียนระดับมหาวิทยาลัยที่
สถานที่เกิด	เป็นเวลา
อาชีพ	วิชาที่เรียน
บิดาและมารดาประกอบอาชีพ	
จำนวนพี่น้อง	ข้อมูลอื่น ๆที่นักเรียนคิดว่าน่าสนใจ
ข้อมูลอื่น ๆที่นักเรียนคิดว่าน่าสนใจ	

	ันพบที่สำคัญของเมนเดล เดลองเกี่ยวกับ
 าฎกา	ารถ่ายทอดพันธุกรรมที่ค้นพบได้แก่
l	·
<u></u>	
3	
นักเร	รียนอภิปรายร่วมกับเพื่อนภายในกลุ่มเพื่อตอบคำถามต่อไปนี้
	ad . wad n w day o w
1.	มีพื้นฐานส่วนตัวเรื่องใดบ้าง ที่เป็นจุดเริ่มต้นนำเมนเดลไปสู่การทดลองผสมพันธุ์ต้นถั่ว
	A: # # ==
2	จากประวัติการศึกษาของเมนเดล นักเรียนคิดว่าความรู้และประสบการณ์ที่เมนเดลได้รับ
۷.	
	ระหว่างการศึกษาในเรื่องใด ที่นำเมนเดลไปสู่การทดลองและคันพบกฎทางพันธุกรรม
เรียน	

แผนการจัดการเรียนรู้ที่ 2-3

เรื่อง ยูจีนิคส์ แนวคิดการปรับปรุงพันธุ์มนุษย์

กลุ่มสาระวิทยาศาสตร์ ชั้นมัธยมศึกษาปีที่ 3 หน่วยการเรียนรู้ที่ 2 เรื่อง การค้นพบกฎของเมนเดล เวลา 1 คาบ

สาระที่ 1 สิ่งมีชีวิตกับกระบวนการดำรงชีวิต

มาตรฐาน ว 1.2 เข้าใจกระบวนการและความสำคัญของการถ่ายทอดลักษณะทางพันธุกรรม วิวัฒนาการของสิ่งมีชีวิต ความหลากหลายทางชีวภาพ การใช้เทคโนโลยีชีวภาพที่มีผลกระทบต่อมนุษย์ และสิ่งแวดล้อม มีกระบวนการสืบเสาะหาความรู้และจิตวิทยาศาสตร์ สื่อสารสิ่งที่เรียนรู้ และนำความรู้ไป ใช้ประโยชน์

มาตรฐาน ว 8.1 ใช้กระบวนการทางวิทยาศาสตร์และจิตวิทยาศาสตร์ในการสืบเสาะหาความรู้ การ แก้ปัญหา รู้ว่าปรากฏการณ์ทางธรรมชาติที่เกิดขึ้นส่วนใหญ่มีรูปแบบที่แน่นอน สามารถอธิบายและ ตรวจสอบได้ภายใต้เครื่องมือที่มีอยู่ในช่วงเวลานั้น ๆ เข้าใจว่าวิทยาศาสตร์และเทคโนโลยี สังคม และ สิ่งแวดล้อมมีความเกี่ยวข้องสัมพันธ์กัน

ตัวชี้วัดที่

ธพ 1 อธิบายและยกตัวอย่างการเปลี่ยนแปลงของความรู้ทางพันธุศาสตร์จากอดีตจนถึง ปัจจุบัน

ชพ 5 อธิบายและยกตัวอย่างผลกระทบของวิทยาศาสตร์กับสังคม

ธพ 6 อธิบายและยกตัวอย่างอิทธิพลของสังคมต่อวิทยาศาสตร์

แนวความคิดหลัก

ความรู้ทางพันธุศาสตร์และสังคมมีผลกระทบซึ่งกันและกัน อย่างไรก็ตามความรู้ที่เป็นที่ ยอมรับในยุคสมัยหนึ่งๆ อาจมีการเปลี่ยนแปลงได้ในอนาคต ดังนั้นการตัดสินใจใด ๆเกี่ยวกับการนำ ความรู้ทางวิทยาศาสตร์ไปใช้ซึ่งก่อให้เกิดผลกระทบทั้งต่อตนเองและสังคมควรคำนึงถึงธรรมชาติของ ความรู้ทางวิทยาศาสตร์ที่อาจเปลี่ยนแปลงได้

จุดประสงค์การเรียนรู้ เพื่อให้นักเรียนสามารถ

- 1. อธิบายความสำคัญของการเก็บรวบรวมหลักฐานเพื่อยืนยันข้อสรุป
- 2. อธิบายผลกระทบของวิทยาศาสตร์ที่มีต่อสังคมในด้านการนำข้อความรู้ทางพันธุศาสตร์ยุคแรก ไปใช้
- 3. อธิบายอิทธิพลของสังคมที่มีต่อความก้าวหน้าในการวิจัยทางวิทยาศาสตร์

สาระสำคัญ

- 1. ยูจีนิคส์ คือ สาขาวิชาที่ศึกษาเกี่ยวกับการพัฒนามนุษย์ให้มีลักษณะตามที่บุคคลและสังคม ต้องการโดยการนำความรู้ทางพันธุศาสตร์มาใช้
- 2. กระแสความนิยมในยูจีนิคส์เป็นผลจากการที่สังคมในยุคสมัยหนึ่งเชื่อว่า การถ่ายทอดลักษณะ ทุกประการของมนุษย์เป็นไปตามกระบวนการถ่ายทอดพันธุกรรมแบบเมนเดล ทำให้เกิดความ เคลื่อนไหวทางการเมืองและสังคมเพื่อควบคุมการถ่ายทอดยืนของมนุษย์ อย่างไรก็ตาม ภายหลังยูจี นิคส์เสื่อมความนิยมลงเนื่องจากความรุนแรงและปัญหาการละเมิดสิทธิมนุษยชนที่เกิดขึ้นส่งผลให้ สถาบันที่สนับสนุนการศึกษาทางยูจีนิคส์ต้องปิดตัวลง
- 3. ความรู้ทางพันธุศาสตร์มีการเปลี่ยนแปลง ความรู้ที่มีอยู่ในปัจจุบันทำให้ทราบว่ากลไกการ ถ่ายทอดลักษณะทางพันธุกรรมมมีความซับซ้อนและมีกรณีที่นอกเหนือไปจากกฎของเมนเดลซึ่ง แตกต่างความรู้ทางพันธุศาสตร์สมัยที่เกิดกระแสนิยมยูจีนิคส์

แนวการจัดกระบวนการเรียนรู้

ขั้นสร้างความสนใจ

- 1. ครูสั่งการบ้านล่วงหน้า โดยตั้งคำถามว่า "หากเราสามารถใช้ความรู้ทางพันธุศาสตร์ควบคุมให้ มนุษย์มีลักษณะดั่งใจต้องการได้ เราต้องการมนุษย์ที่มีลักษณะอย่างไร" ให้นักเรียนส่งคำตอบ พร้อมรูปภาพประกอบล่วงหน้าอย่างน้อย 1 วัน
- 2. ครูรวบรวมลักษณะของมนุษย์ พร้อมรูปภาพประกอบจากการบ้านของนักเรียนมานำเสนอหน้า ชั้น และตั้งคำถามว่า
 - 1) เราจะมีวิธีการอย่างไรให้มนุษย์ที่มีลักษณะเช่นนี้เมีจำนวนมากขึ้น
 - 2) เราจะทำอย่างไรให้มนุษย์ที่มีลักษณะที่ไม่พึงประสงค์มีจำนวนลดลง

ขั้นดำเนินกิจกรรม

- 1. ครูเล่าเรื่องราวเกี่ยวกับกำเนิดของแนวคิดการปรับปรุงพันธุกรรมของมนุษย์หรือยูจีนิคส์และ วิธีการที่นักวิชาการยูจีนิคส์ใช้ในการเก็บรวบรวมข้อมูล
- 2. ให้นักเรียนทำงานเป็นกลุ่ม 4-6 คน ครูอธิบายบริบทของกิจกรรมบทบาทสมมติและวิธีการทำ กิจกรรม ดังนี้

- 1.1 นักเรียนจะได้รับบทบาทที่แตกต่างกัน ให้นักเรียนศึกษาบทบาทของตนเองก่อน ดำเนินการอภิปราย
- 1.2 ในการอภิปราย ให้นักเรียนแนะนำตัวต่อเพื่อนตามบทบาทที่ตนเองได้รับ และนักเรียน ต้องสวมบทบาทที่ได้รับมอบหมาย และออกความเห็นตามบทบาทที่ตนเองได้รับเท่านั้น
- 3. ครูแจกบทบาทที่เขียนไว้บนการ์ด 1 ใบ ต่อ 1 บทบาท (รายละเอียดแนบท้ายแผน) หาก นักเรียนมีจำนวนมากกว่าบทบาทที่กำหนดให้ ครูสามารถกำหนดให้มีนักเรียนรับบทบาท นักวิทยาศาสตร์หรือนักวิชาการด้านยูจีนิคส์มากกว่า 1 คน ต่อหนึ่งกลุ่ม
- 4. ให้นักเรียนในกลุ่มสุ่มหยิบการ์ดบทบาทสมมติ คนละ 1 ใบ และเริ่มการอภิปรายตามหัวข้อที่ กำหนด
- 5. หลังการอภิปรายตามบทบาทสมมติ ให้นักเรียนรายบุคคล เขียนแสดงความเห็นต่อกฎหมายที่ กำหนดให้ผู้ที่มียืนไม่ดีถูกควบคุมตัวและถูกบังคับให้ทำหมันลงในใบงานที่ 8 ตอนที่ 1
- 6. ครูเล่าเรื่องราวประกอบใบความรู้เกี่ยวกับยูจินิคส์ที่เหลือจนกระทั่งการวิจัยเกี่ยวกับยูจีนิคส์ ล้มเลิกไป

ขั้นสรุปกิจกรรม

- 1. ครูกระตุ้นให้นักเรียนสรุปกิจกรรม โดยใช้คำถามต่อไปนี้
 - 1) การสนับสนุนของรัฐบาลและสังคมมีผลต่อความก้าวหน้าในการวิจัยที่เกี่ยวข้องกับ การปรับปรุงพันธุ์มนุษย์อย่างไร
 - 2) ปัจจัยใดบ้างที่มีผลต่อสังคมในการสนับสนุนงานวิจัย
- 2. ให้นักเรียนบันทึกผลการอภิปรายลงในใบงาน

ขั้นประเมินผล

ประเมินจากผลสรุปการอภิปรายที่นักเรียนบันทึกในใบงาน

สื่อการเรียนรู้

- 1. ใบงานที่ 8
- 2. ใบความรู้หน้า 24-26

วัสดุ/อุปกรณ์

การ์ดบทบาทสมมติซึ่งครูสามารถเตรียมล่วงหน้าโดย พิมพ์บทบาทที่กำหนดให้นักเรียนลงใน 1 บทบาท ต่อกระดาษการ์ด 1 แผ่น

บทบาทสมมติ

ในปี 1900 นักวิทยาศาสตร์พบว่าในสิ่งมีชีวิตรวมทั้งมนุษย์มีหน่วยทางชีววิทยาอย่างหนึ่ง เรียกว่ายืน ทำหน้าที่ถ่ายทอดลักษณะต่าง ๆจากพ่อแม่สู่ลูก แม้ว่าจะไม่มีใครเคยเห็นยืน แต่ด้วยหลักการ ถ่ายทอดพันธุกรรมที่นักวิทยาศาสตร์เรียกว่ากฎของเมนเดลก็สามารถอธิบายปรากฏการณ์การถ่ายทอด พันธุกรรมได้อย่างสอดคล้อง ก่อให้เกิดกระแสความคิดว่า เราสามารถสร้างสังคมที่มั่นคงและปลอดภัย กว่าเดิมได้โดยการควบคุมให้คนที่มีลักษณะที่ดี เช่น ผิวขาว ฉลาด ฐานะร่ำรวย สืบพันธุ์มีลูกหลาน ต่อไป และควบคุมให้คนที่มีลักษณะที่ไม่ไม่ดี เช่น ผิวสี สติปัญญาไม่สมประกอบ ถูกควบคุมไว้ในที่จำกัด เพื่อไม่ให้แพร่พันธุ์และให้กำเนิดลูกหลานที่มีลักษณะไม่ดี แนวคิดนี้ถูกเสนอต่อรัฐบาลเพื่อให้ออก กฎหมายควบคุมผู้ที่มีสติปัญญาไม่สมประกอบให้ทำหมันเพื่อลดปัญหาการเพิ่มจำนวนพลเมืองที่มี สติปัญญาไม่สมประกอบในอนาคต

"ในฐานะที่คุณเป็นพลเมืองในสังคมนี้ คุณจะสนับสนุนให้รัฐบาลออกกฎหมายควบคุมผู้ ที่มีสติปัญญาไม่สมประกอบให้ทำหมันหรือไม่"

บทบาทที่ 1

คุณคือนักวิทยาศาสตร์ผู้เชี่ยวชาญด้านพันธุศาสตร์ คุณทำการทดลองเพื่อศึกษาการถ่ายทอด ลักษณะทางพันธุกรรมในสิ่งมีชีวิตหลายชนิดทั้งพืชและสัตว์ คุณนับถือปรมาจารย์ด้านพันธุศาสตร์อย่าง วิลเลียม เบทสันและฮิวโก เดอวรีย์ คุณทราบว่า ยีน เป็นสิ่งที่ยังไม่มีนักวิทยาศาสตร์คนใดมองเห็น แต่ จากผลการทดลองของคุณและนักวิทยาศาสตร์อีกหลายสิบคนก็เป็นไปตามแนวคิดเรื่องยีนและกฎของ เมนเดลจริงๆ อย่างไรก็ตามคุณยอมรับว่ามีลักษณะของสิ่งมีชีวิตอีกหลายอย่างที่ยังไม่ถูกทดสอบว่า เป็นไปตามกฎของเมนเดล โดยเฉพาะการถ่ายทอดพันธุกรรมของมนุษย์ที่ไม่สามารถนำมาเลี้ยงดูเพื่อ สังเกตในห้องทดลองได้อย่างสิ่งมีชีวิตอื่น

บทบาทที่ 2

คุณคือนักวิชาการด้านยูจีนิคส์ ผลการทดลองของนักวิทยาศาสตร์ทำให้คุณทราบว่า ยีน เป็น หน่วยทางชีววิทยาที่ทำหน้าที่ควบคุมการถ่ายทอดลักษณะต่าง ๆจากพ่อแม่สู่ลูก แม้ว่านักวิทยาศาสตร์ จะไม่สามารถทำการทดลองในมนุษย์เหมือนที่ทำกับพืชและสัตว์ได้ แต่จากการศึกษาพงศาวลีของ ครอบครัวนับหมื่นครอบครัวก็สอดคล้องกับแนวคิดเรื่องยืนและกฎของเมนเดลเป็นการยืนยันให้คุณ มั่นใจว่าลักษณะทุกประการของมนุษย์เป็นผลจากการถ่ายทอดพันธุกรรมโดยยืน คุณเชื่อมั่นว่าสังคมจะ ดีขึ้นได้ถ้าคนที่มีลักษณะแย่ ๆอย่างสติปัญญาไม่สมประกอบ เป็นโรคติดเหล้า หรือมีผิวสี ถูกควบคุมตัว ไม่ให้ดำรงชีวิตในสังคมปกติ และถูกบังคับให้ทำหมันเสีย เพื่อที่สังคมในอนาคตจะได้เต็มไปด้วยคนที่มี รูปร่างหน้าตา สติปัญญา และจิตใจที่ดี

บทบาทที่ 3

คุณและคู่สมรสที่มีฐานะยากจน ลูกคนเดียวของคุณอาจไม่ฉลาดเฉลียวนัก แต่ก็ดูแลตนเอง และช่วยคุณทำไร่ไถนาได้ วันหนึ่งมีนักวิชาการฐานะร่ำรวยมาพบคุณที่บ้าน หลังจากถามคำถามคุณและ คนในครอบครัวหลายอย่างนักวิชาการคนเดิมได้กลับมาพบคุณและบอกกับคุณว่าลูกของคุณมีสติปัญญา ต่ำกว่าปกติ ในอนาคตเมื่อลูกของคุณแต่งงาน เขาจะให้กำเนิดลูกที่มีสติปัญญาต่ำ เป็นภาระของคุณและ สังคม คุณจึงควรส่งลูกของคุณไปอยู่ในโรงพยาบาลที่มีแต่คนที่สติปัญญาต่ำเหมือนๆกัน และควบคุมให้ ทำหมันเพื่อจะได้ไม่มีลูกต่อไป

บทบาทที่ 4

คุณเป็นเด็กสาว / เด็กหนุ่ม ที่เกิดมาในครอบครัวที่มีฐานะยากจน คุณช่วยพ่อแม่ทำงานใน บ้านเพื่อให้พอมีอาหารกินในแต่ละวัน วันหนึ่งมีนักวิชาการฐานะร่ำรวยมาพบคุณที่บ้าน หลังจากถาม คำถามคุณและคนในครอบครัวหลายอย่างนักวิชาการคนเดิมได้กลับมาพบคุณและบอกกับพ่อแม่ของคุณ ว่าคุณมีสติปัญญาต่ำกว่าปกติ ในอนาคตเมื่อคุณแต่งงาน คุณจะให้กำเนิดลูกที่มีสติปัญญาต่ำ ทั้งคุณและ ลูกจะเป็นภาระทั้งของครอบครัวและสังคม คุณจะต้องถูกส่งไปอยู่ในโรงพยาบาลที่มีแต่คนที่สติปัญญาต่ำ เหมือนๆกัน และถูกควบคุมให้ทำหมันเพื่อจะได้ไม่มีลูกต่อไป

ใบงานที่ 8 เรื่อง ยูจีนิคส์ แนวคิดการปรับปรุงพันธุ์มนุษย์ ระดับชั้นมัธยมศึกษาปีที่ 3

รายวิชา วิทยาศาสตร์ 9 กลุ่มสาระการเรียนรู้วิทยาศาสตร์ รหัสวิชา ว 33101 ชั้น ม. 3/..... เลขที่....... ชื่อ...... หามสกุล..... วันที่...../..... กลุ่มที่...... ชื่อกลุ่ม..... ตอนที่ 1 หลังเสร็จสิ้นกิจกรรมบทบาทสมมติแล้ว ให้นักเรียนแสดงความคิดเห็นที่เป็นของนักเรียนเอง ตามหัวข้อ "เราควรสนับสนุนให้รัฐบาลออกกฎหมายควบคุมผู้ที่มีสติปัญญาไม่สมประกอบให้ทำหมัน หรือไม่ เพราะเหตุใด" ตอนที่ 2 หลังจากที่ครูอธิบายเรื่องยูจีนิคส์จบ ให้นักเรียนบันทึกผลการอภิปรายในกลุ่มในหัวข้อ ต่อไปนี้ 3) ในช่วงเวลาราว ค.ศ. 1900 นักวิทยาศาสตร์มีแนวคิดว่า ลักษณะทุกประการของมนุษย์ล้วนถูก ควบคุมด้วยยืน และเป็นไปตามอัตราส่วนที่แน่นอนตามกฎของเมนเดล นักเรียนคิดว่าปัจจุบัน นักวิทยาศาสตร์ยังมีแนวคิดเช่นนั้นหรือไม่

4)	นักเรียนคิดว่าความรู้ทางวิทยาศาสตร์ที่เป็นที่ยอมรับในยุคสมัยหนึ่ง ๆ สามารถเปลี่ยนแปลงได้ หรือไม่ เพราะเหตุใด
5)	การนำความรู้ทางพันธุศาสตร์ไปใช้ในช่วงปีค.ศ. 1900 ก่อให้เกิดผลต่อสังคมอย่างไร
 6)	การสนับสนุนของรัฐบาลและสังคมมีผลต่อความก้าวหน้าในการวิจัยที่เกี่ยวข้องกับการปรับปรุงพันธุ์ มนุษย์อย่างไร
	L. SIVE
7)	ปัจจัยใดมีผลต่อสังคมในการสนับสนุนงานวิจัย
	N. Suns


หน่วยการเรียนรู้ที่ 1

เมนเดลกับต้นกำเนิดวิชาพันธุศาสตร์

กิจกรรมที่ 1 จากชีวประวัติของ เมนเดล นักเรียนคิดว่า พื้นฐาน ส่วนตัวด้านใดของเมนเดล ช่วยให้ เกิดการค้นพบครั้งสำคัญทาง พันธุศาสตร์

หัวข้อที่ 1 รู้จักเมนเดล บิดาแห่งวิชาพันธุศาสตร์

เกรเกอร์ โยฮัน เมนเดล เกิดเมื่อวันที่ 22 กรกฎาคม ค.ศ. 1822 ที่ หมู่บ้านเล็กๆในเมืองไฮเซนดอร์ฟ ประเทศออสเตรีย (ปัจจุบันคือ เมืองบรูโน สาธารณรัฐเชค)บิดาของเมนเดลเป็นชาวไร่ เมนเดล จึง คุ้นเคยกับการปลูกและปรับปรุงคุณภาพผลไม้ตั้งแต่เด็ก

ครอบครัวของเมนเดลมีฐานะค่อนข้างยากจน จึงไม่คาดหวัง ให้เมนเดลเรียนหนังสือต่อในการศึกษาขั้นสูงๆ แต่เนื่องจากเมน เดลเป็นเด็กเฉลียวฉลาดและเรียนหนังสือเก่ง ครูที่โรงเรียนจึง สนับสนุนและใน้มน้าวให้ครอบครัวของเมนเดลส่งเข้าเรียนต่อชั้น มัธยมในโรงเรียนพิเศษสำหรับเด็กนักเรียนที่ต้องการเตรียมตัวเข้า มหาวิทยาลัย

เมื่อเมนเดลอายุได้ 16 ปี ระหว่างกำลังศึกษาอยู่ใน โรงเรียนพิเศษ บิดาของเขาประสบอุบัติเหตุทำให้ทางบ้านประสบ

ปัญหาด้านการเงิน เมนเดลต้องเผชิญกับความเครียดทั้งด้านการเรียนและปัญหาการเงิน แต่ก็อาศัยความ มานะพยายามจนเรียนจบชั้นมัธยม

ในปี ค.ศ. 1843 เมนเดลบวชเป็นพระใน ศาสนาคริสต์ที่วัดแห่งหนึ่ง ในเมืองบรุนน์ และเข้าศึกษา ในวิทยาลัยไปพร้อมๆกัน ที่วิทยาลัยศาสนา บรุนน์ เมน เดลศึกษาเกี่ยวกับวิทยาศาสตร์ธรรมชาติ เศรษฐศาสตร์ การปลูกผลไม้ รวมถึงเทคนิคการผสมเทียมพืช ซึ่งเป็น พื้นฐานสำคัญสำหรับการศึกษาทดลองของเขาในเวลา ต่อมา

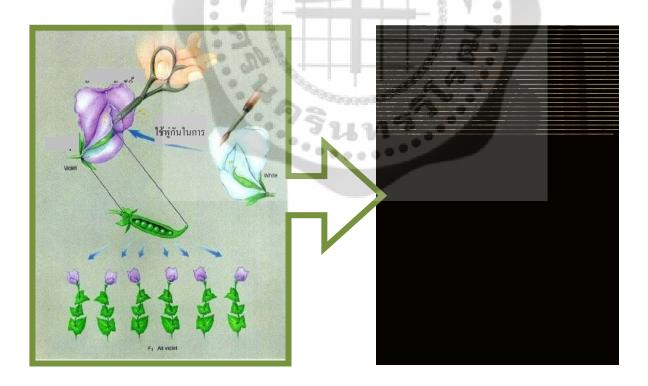
หลังจากเรียนจบจากวิทยาลัยศาสนาบรุนน์ในปี ค.ศ. 1848 เมนเดลกลับเข้าทำงานรับใช้ ศาสนจักรอีกครั้ง โดยทำหน้าที่ดูแลผู้ป่วยในโรงพยาบาลที่อยู่ใกล้วัด และต่อมาก็ถูกส่งให้ทำงานเป็นครู สอนธรรมชาติวิทยาและฟิสิกส์ จนกระทั่งเข้าเรียนต่อที่สถาบันทางฟิสิกส์ที่มหาวิทยาลัยบรุนน์ ซึ่ง เมนเดลได้ศึกษาวิชาฟิสิกส์และทฤษฎีความน่าจะเป็นกับอาจารย์ผู้เชี่ยวชาญที่มีชื่อเสียง นอกจากนั้นเมน เดลยังเรียนวิชาชีววิทยาและทฤษฎีเกี่ยวกับเซลล์ ซึ่งในวิชานี้เองที่เมนเดลได้ศึกษาผลงานการทดลอง นักวิทยาศาสตร์ชื่อเกอร์เนอร์ซึ่งทำการทดลองผสมพันธุ์พืชข้ามลักษณณะกว่า 10,000 การทดลอง โดยใช้ พืชกว่า 700 สายพันธุ์ ทำให้เมนเดลรู้สึกสนใจในงานวิจัยนี้อย่างมาก

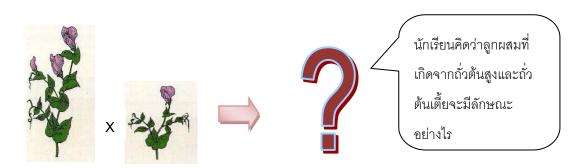
หลังจากศึกษาที่มหาวิทยาลัยบรุนน์เป็นเวลาสองปี เมนเดลจบการศึกษาและกลับมาอยู่ที่วัด ตามเดิม และใช้เวลาเป็นครูสอนธรรมชาติวิทยาและฟิสิกส์ที่โรงเรียนในเมืองบรุนน์ และเริ่มทำการทดลอง ผสมพันธุ์หนูสีขาวกับหนูสีเทาในห้องของตนเอง และสังเกตสีของลูกหนูที่ได้ ในขณะเดียวกันก็ทดลองและ สังเกตผลการผสมพันธุ์พืชมีดอกในสวน อย่างไรก็ตามเมนเดลไม่สามารถพูดคุยแลกเปลี่ยนความคิดเรื่อง การทดลองผสมพันธุ์หนูกับผู้อื่นได้ เนื่องจากการทดลองผสมเทียมสัตว์ถือเป็นเรื่องผิดศีลธรรมสำหรับ นักบวชในศาสนาคริสต์

ภาพดอกของต้นถั่ว

ในปี ค.ศ. 1854 เมนเดลเริ่มทำการทดลองผสมพันธุ์ต้น ถั่วลันเตาอย่างจริงจัง การที่เมนเดลเลือกต้นถั่วลันเตาเป็นพืช สำหรับการทดลองนั้นไม่ใช่เรื่องใหม่ นักวิทยาศาสตร์คนอื่นๆใน สมัยนั้นก็ใช้ต้นถั่วลันเตาเป็นพืชในการทดลองอยู่เสมอ เนื่องจาก รูปทรงของดอกที่มีอวัยวะสืบพันธุ์อยู่ในกระเปาะ สามารถดึง เกสรตัวผู้มาป้ายบนเกสรตัวเมียได้ทันที ซึ่งสะดวกต่อ กระบวนการผสมเทียม

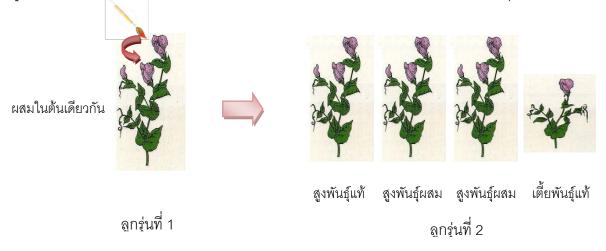
หัวข้อที่ 2 เรียนรู้การทดลองของเมนเดล


จากการศึกษาเอกสารต่างๆเกี่ยวกับเมนเดลทำให้นัก ประวัติศาสตร์เชื่อว่า จุดมุ่งหมายแรกในการทดลองของเมน เดลนั้นไม่ใช่เพื่อต้องการศึกษาเกี่ยวกับการถ่ายทอดลักษณะ ทางพันธุกรรมของต้นถั่ว แต่เมนเดลคาดหวังว่าการผสมต้นถั่ว ที่มีลักษณะแตกต่างกันน่าจะให้ผลเป็นต้นถั่วลักษณะใหม่ๆที่ ยังไม่เคยมีมาก่อน ดังนั้นเมนเดลจึงเริ่มทำการทดลองโดยนำ ต้นถั่วที่มีลักษณะแตกต่างกันมาผสมพันธุ์กันเพื่อสังเกตว่า ลูก ที่เกิดขึ้นจะมีลักษณะอย่างไร กิจกรรมที่ 2 ช่วยกันออกแบบ การทดลองเพื่อแก้ปัญหาต่อไปนี้ หนึ่งในลักษณะของต้นถั่วที่เมน เดล เลือกทำการทดลองคือ ความ สูงของลำต้น นักเรียนจะออกแบบ การทดลองอย่างไร เพื่อศึกษาผล ของการผสมพันธุ์ระหว่างถั่วต้นสูง และถั่วต้นเตี้ย



ภาพแสดงขั้นตอนการผสมเทียมพืช


การผสมเทียมพืชทำโดยการใช้พู่กันแตะละอองเกสรตัวผู้จากดอกหนึ่ง มาแตะที่ปลายเกสร ตัว เมียของอีกดอกหนึ่ง ในภาพเป็นตัวอย่างการผสมระหว่างต้นถั่วที่มีดอกสีขาวกับดอกสีม่วง


เมนเดลทำการทดลองผสมพันธุ์ต้นถั่วโดยใช้พู่กันแตะละอองเกสรตัวผู้ในดอกของ**ถั่วต้นสูง** และ แตะลงบนเกสรตัวเมียในดอกของ**ถั่วต้นเตี้ย** เพื่อให้ผสมพันธุ์กันและออกเมล็ดเป็นถั่วต้นใหม่

เมื่อสังเกตถั่วรุ่นลูกที่เกิดขึ้น เมนเดลพบถั่วรุ่นลูกเป็นต้นสูงทั้งหมด

ผลการทดลองปรากฏว่าต้นถั่วรุ่นลูกที่ 1 (F1) ทั้งหมดเป็นถั่วต้นสูง ซึ่งทำให้ดูเหมือนว่าลักษณะ เตี้ยจากรุ่นพ่อแม่จะหายไปในรุ่น F1 เมนเดลประหลาดใจมาก และทำการทดลองต่อโดยการนำถั่วลูกรุ่น F1 มาผสมในต้นเดียวกัน ปรากฏว่าต้นถั่วจำนวนสามในสี่ของถั่วที่เกิดขึ้นในต้นถั่วรุ่นลูกที่ 2 (F2) เป็นต้น สูง ส่วนต้นถั่วที่เหลือซึ่งคิดเป็นอัตราส่วนหนึ่งในสี่เป็นต้นเตี้ย ซึ่งเป็นลักษณะที่หายไปในรุ่น F1

เมนเดลทำการทดลองต่อจนทราบว่า ในลูกรุ่น F2 นั้น มีถั่วต้นสูงอยู่สามส่วนก็จริง แต่ในจำนวนนี้ เป็นถั่วต้นสูงพันธุ์แท้เพียงหนึ่งส่วนเท่านั้น อีกสองส่วนเป็นถั่วต้นสูงพันธุ์ผสม ส่วนถั่วต้นเตี้ยนั้น เป็นพันธุ์ แท้

คำศัพท์ควรรู้

ต้นถั่วพันธุ์แท้ หมายถึง ต้นถั่วที่ผสมในต้นเดียวกันแล้วให้ลูกลักษณะเหมือนต้นแม่ทั้งหมด เช่น แม่เป็นต้นสูง ให้ลูกสูงทั้งหมด เรียกว่า ต้นสูงพันธุ์แท้

ต้นถั่วพันธุ์ผสม
 หมายถึงต้นถั่วที่ผสมในต้นเดียวกันแล้วให้ลูกทั้งลักษณะเหมือนและต่าง
 จากแม่ปนกัน เช่น แม่เป็นต้นสูง แต่ให้ลูกทั้งสูงและเตี้ย ซึ่งแสดงว่าแม่มี
 ลักษณะเตี้ยผสมอย่ หรือสอบอย่ จึงให้ลอลักษณะเตี้ยได้

เมนเดลทำการทดลองลักษณะเดียวกันกับต้นถั่วจำนวนมากและได้ผลอย่างเดียวกัน จึงลอง เปลี่ยนไปทดลองกับลักษณะอื่นๆ ของต้นถั่วรวม 7 ลักษณะ รวมแล้วเมนเดลทำการทดลองกับต้นถั่วรวม กว่าสองหมื่นต้น ได้ผลการทดลองดังนี้

ตารางแสดงผลการทดลองของเมนเดล

ય ાલંગ યું	สักษณะที่ปรากฏ	
ลักษณะของพ่อแม่ที่ใช้ผสมพันธุ์	ลูกรุ่นที่ 1	ลูกรุ่นที่ 2
ಚ ಚ	เมล็ดกลมทุกต้น	เมลี่คกลม 5,474 ต้น
เมล็ดกลม X เมล็ดขรุขระ		เมล็ดขรุขระ 1,850 ต้น
เมล็คสีเหลือง x เมล็คสีเขียว	เมล็ดสีเหลืองทุกต้น	เมล็ดสีเหลือง 6,022 ต้น
เมลคสเหลอง x เมลคสเขยว		เมล็คสีเขียว 2,001 ต้น
91 91l	ฝักอวบทุกต้น	ฝักอวบ 882 ต้น
ฝักอวบ x ฝักแฟบ		ฝักแฟบ 229 ต้น
ଖୁ-ସ୍ଟ୍ର - ଖୁ-ସ୍-୍	9 G.G y	ฝักสีเขียว 428 ต้น
ฝักสีเขียว x ฝักสีเหลือง	ฝักสีเขียวทุกต้น	ฝักสีเหลือง 152 ต้น
ดอกเกิดที่ลำต้น x ดอกเกิดที่ยอด	คอกเกิดที่ลำต้น	ดอกเกิดที่ถำต้น 651 ต้น
ดอกเกิดทลาดน x ดอกเกิดที่ยอด	คอกเกคทลาตน	คอกเกิดที่ยอค 207 ต้น
g! g	ดอกสีม่วงทุกต้น	ดอกสีม่วง 705 ต้น
ดอกสีม่วง x ดอกสีขาว		ดอกสีขาว 224 ต้น

จำเป็นหรือไม่ ที่ผลการทดลองของทุกกลุ่ม จะต้องเหมือนกัน

ไม่จำเป็น นักวิทยาศาสตร์ที่ดีต้อง
พยายามหลีกเลี่ยงอคติในการทำงาน แต่การสังเกต
และการตีความหมายข้อมูลเพื่อสร้างข้อสรุปทาง
วิทยาศาสตร์ก็จำเป็นต้องอาศัยประสบการณ์และ
ความรู้เดิมของผู้สังเกต ดังนั้นการสังเกตและสรุปผล
ข้อมูลทางวิทยาศาสตร์จึงอาจแตกต่างกันได้

ข้อสรุปของเมนเดล

1. ลักษณะเด่น ลักษณะด้อย

เมื่อผสมต้นถั่วที่มีลักษณะต่างกัน ลักษณะหนึ่งจะ ปรากฏในลูกรุ่น F1 เรียกว่า **ลักษณะเด่น** แต่อีกลักษณะจะหายไป เรียกว่า **ลักษณะด้อย**

2. อัตราส่วนการเกิดลักษณะที่แน่นอน

การผสมพันธุ์ต้นถั่วพันธุ์แท้ที่มีลักษณะแตกต่างกัน ให้อัตราส่วนที่มีการเกิดลักษณะที่แน่นอน ดังนี้

ลูกรุ่นที่ 1 เป็นลักษณะเด่นทั้งหมด

ลูกรุ่นที่ 2 เป็นลักษณะเด่น : ลักษณะด้อย ในอัตราส่วน 3 : 1

ในจำนวนนี้เป็น ลักษณะเด่นพันธุ์แท้ : ลักษณะเด่นพันธุ์ผสม : ลักษณะด้อยพันธุ์แท้ ใน อัตราส่วน 1 : 2 : 1

> จากการสังเกตผลการผสมพันธุ์ต้นถั่ว เมนเดล สร้างข้อสรุปเหล่านี้ได้อย่างไร

การสังเกตผลการผสมพันธุ์ต้นถั่ว ทำให้เมนเดลได้ข้อมูลที่เป็น ข้อเท็จจริง เกี่ยวกับลักษณะและจำนวนของต้นถั่วรุ่นลูก แต่ การสร้างข้อสรุปเกี่ยวกับลักษณะเด่น ลักษณะด้อย และ อัตราส่วนที่แน่นอนนั้น ได้จากกระบวนการ**ตีความหมาย** ข้อมูล ซึ่งต้องอาศัยการนำประสบการณ์ ความคิดเห็น และ ทฤษฎีต่างๆที่นักวิทยาศาสตค์เชื่อถือมาพิจารณาข้อเท็จจริงที่ ได้จากการสังเกต ซึ่งเมนเดลใช้ทฤษฎีทางคณิตศาสตร์เรื่อง ความน่าจะเป็นในการสร้างข้อสรุปดังนี้

กิจกรรมที่ 2 ตอนที่ 2

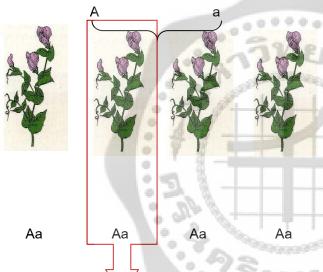
สวมบทบาทของเมนเดล
สรุปข้อมูลการผสมพันธุ์ต้นถั่ว
ที่เมนเดลบันทึกไว้ เสร็จแล้ว
เปรียบเทียบกับเพื่อนกลุ่มอื่น
ว่าสามารถสรุปผลการทดลอง
ได้เหมือนกันหรือไม่

กิจกรรมที่ 3

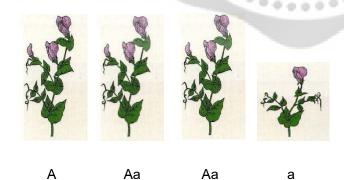
ทำกิจกรรมจับคู่การ์ดเพื่อ เรียนรู้หลักของความน่าจะเป็น ที่เมนเดลใช้ในการสร้าง ข้อสรุปเกี่ยวกับการถ่ายทอด ลักษณะทางพันธุกรรม

แผนภาพแสดงความคิดของเมนเดล

กำหนดให้ A แสดง ลักษณะเด่น ของต้นถั่ว


a แสดง ลักษณะด้อย ของต้นถั่ว

×


กิจกรรมที่ 4

ทำความเข้าใจหลักการถ่ายทอด ลักษณะทางพันธุกรรมของเมนเดลแล้ว ฝึกทำนายผลการผสมพันธุ์ต้นถั่ว

วุ่นพ่อแม่ : ผสมระหว่างลักษณะเด่นกับ ลักษณะด้อย

ลูก F1 : แสดงลักษณะเด่นออกมาทั้งหมดแต่มี
ความสามารถถ่ายทอดได้ทั้งลักษณะสูงและ
ลักษณะเตี้ยอย่างเป็นอิสระจากกันและกัน

2

1

ลูก F2 ปรากฏลักษณะเด่น : ลักษณะด้อย เป็นอัตราส่วน 3:1

ในจำนวนนี้ได้แก่ลักษณะเด่นพันธุ์แท้ : ลักษณะ เด่นพันธุ์ผสม : ลักษณะด้อยพันธุ์แท้ คิดเป็น อัตราส่วน 1:2:1

หัวข้อที่ 3 ตามรอยเมนเดล หลังเผยแพร่ผลการทดลองเรื่องสำคัญ

กิจกรรมที่ 5

ช่วยกันวางแผนหาทางเผยแพร่ผลงานของเมนเดลให้เป็นที่รู้จักและร่วมอภิปราย เกี่ยวกับบทบาทของสังคมต่อการยอมรับข้อค้นพบใหม่ทางวิทยาศาสตร์

เป็นเรื่องน่าเสียดายที่วารสารที่เมนเดลตีพิมพ์
ผลงานวิจัยไม่ใช่วารสารที่มีชื่อเสียง ผลงานวิจัยของเมนเดลจึง
ไม่ได้รับความสนใจมากนัก อีกทั้งเมนเดลยังทำการทดลองตาม
ลำพังโดยขาดการติดต่อกับผู้คนในสังคมวิทยาศาสตร์ ดังนั้น
แม้ว่า เมนเดลจะส่งสำเนาผลงานวิจัยให้บุคคลอื่นๆ รวม 40 ฉบับ
แต่ปรากฏว่ามีนักวิทยาศาสตร์เพียงไม่กี่คนที่ได้อ่านงานของเมน
เดล หนึ่งในนั้น คือ คาร์ล วิลเอล์ม วอน นาเกลี นักวิทยาศาสตร์ที่
มีชื่อเสียงด้านพฤกษศาสตร์ (การศึกษาเกี่ยวกับพืช) ซึ่งเมนเดลเขียนจดหมายถึงและส่งงานวิจัยให้ค่านเพื่อขอคำแนะนำ

คาร์ล วิลเฮล์ม วอน นาเกลี (Carl Wilhelm von Naegeli)

ต้นฮอควีด

เช่นเดียวกับนักวิทยาศาสตร์อื่นๆอีกหลายคน นาเกลีไม่ได้ให้
ความสำคัญกับผลงานการทดลองของเมนเดลซึ่งเป็นนักบวชรูปหนึ่งมาก
นัก หลังจากเวลาผ่านไปหลายเดือน นาเกลีได้เขียนจดหมายตอบเมนเดล
และแนะนำให้เมนเดลทำการทดลองอีกครั้งโดยเปลี่ยนจากต้นถั่วเป็นพืช

เมนเดลทำการทดลองซ้ำอีกครั้งกับต้นฮอควีด ซึ่งผลการทดลอง แตกต่างจากที่พบในต้นถั่วโดยสิ้นเชิง เมื่อสิ่งที่สังเกตไม่เป็นไปตามแบบแผน เมนเดลจึงไม่สามารถอ้างอิงผลการทดลองจากต้นถั่วไปยังพืชหรือสิ่งมีชีวิต ชนิดอื่นได้ ด้วยความผิดหวัง เมนเดลจึงเลิกล้มความพยายามที่จะทำงาน ต่างๆที่เกี่ยวข้องกับวิทยาศาสตร์อีกต่อไปจนกระทั่งเสียชีวิตในปี ค.ศ. 1884 โดยไม่มีผู้ใดตระหนักถึงความสำคัญของการทดลองของเขา

ไขปัญหา : เพราะเหตุใดการทดลองที่เมนเดลผสมพันธ์ต้นฮอค์วีดจึงไม่เป็นไป ตามแบบแผนเดียวกับการทดลองผสมพันธุ์ต้นถั่ว

ในสมัยนั้นไม่มีใครทราบว่า ต้นฮอควีด เป็นพืชที่สามารถสืบพันธุ์ได้สองแบบ คือทั้งสืบพันธุ์แบบอาศัยเพศ และไม่อาศัยเพศ

นักเรียนคิดว่าการที่ต้นฮอควีดสืบพันธุ์แบบไม่อาศัยเพศได้ ส่งผลต่อการ ทดลองของเมนเดลอย่างไร

คำถามเพื่อการอภิปราย

- จากเรื่องราวการทดลองของเมนเดล นักเรียนสรุปวิธีการทดลองของเมนเดลได้หรือไม่ว่ามีขึ้นตอน อย่างไร
- 2. พื้นฐาน ประสบการณ์ส่วนตัวของเมนเดลข้อใดบ้าง ที่ส่งผลต่อการทำงานของเมนเดล
- 3. ปัจจัยใดบ้างที่ทำให้ผลงานของเมนเดลไม่เป็นที่ยอมรับในสังคม
- 4. นักวิทยาศาสตร์คนอื่นๆและสังคมมีผลต่อความเจริญก้าวหน้าทางวิทยาศาสตร์อย่างไร

สรุปสาระสำคัญของหน่วยการเรียนรู้ที่ 1

1. ข้อสรุปของเมนเดล

การทดลองผสมพันธุ์ต้นถั่วของ เกรเกอร์ โจฮาน เมนเดลได้ข้อสรุปจากการทดลองดังนี้

- 3. เมื่อผสมระหว่างต้นถั่วที่มีลักษณะต่างกัน ลักษณะหนึ่งจะหายไปในลูกรุ่นที่หนึ่งเสมอ แต่จะ ปรากฏอีกครั้งในลูกรุ่นที่สอง โดยมีอัตราส่วนแน่นอน
- 4. สิ่งมีชีวิตมีหน่วยควบคุมลักษณะที่อยู่เป็นคู่ โดยลักษณะหนึ่งสามารถข่มอีกลักษณะหนึ่งได้ เรียกว่าลักษณะเด่น ในทางตรงกันข้าม อีกลักษณะหนึ่งสามารถถูกข่มไม่ให้แสดงออก เรียกว่า ลักษณะ ด้าย

กระบวนการสืบเสาะหาความรู้ของเมนเดล

กระบวนการสำคัญในการสืบเสาะหาความรู้ของเมนเดล คือการสังเกตและรวบรวมข้อมูลจากการ สังเกตต้นถั่ว และการตีความหมายข้อมูลด้วยประสบการณ์และความรู้ที่ตนเองมีเพื่อนำไปสู่ข้อสรุป

พื้นฐานส่วนบุคคลของเมนเดลกับการสืบเสาะหาความรู้

การออกแบบวิธีการทดลองและกระบวนการการสร้างข้อสรุปของเมนเดลมีผลมาจากพื้นฐาน ส่วนตัวที่เติบโตมาในครอบครัวของเกษตรกร การศึกษาเรื่องการผลิตพืชพันธุ์ผสม และหลักความน่าจะเป็น ที่เมนเดลได้ศึกษาในมหาวิทยาลัย

4. อิทธิพลของสังคมต่อข้อค้นพบของเมนเดล

สังคมมีผลต่อการยอมรับและเพิกเฉยข้อค้นพบของนักวิทยาศาสตร์ การที่ข้อค้นพบของเมนเดล ไม่ได้รับการยอมรับในศตวรรษที่ 19 เนื่องจากหลักการทางคณิตศาสตร์ที่เมนเดลใช้ในการอธิบายกลไกการ ถ่ายทอดลักษณะทางพันธุกรรมของต้นถั่วเป็นเรื่องใหม่ที่ยากจะเข้าใจสำหรับนักชีววิทยาในสมัยนั้น ประกอบกับการที่เมนเดลไม่มีชื่อเสียงในการดำเนินงานทางวิทยาศาสตร์

หน่วยการเรียนรู้ที่ 2

เมื่อข้อค้นพบของเมนเดล "ถูกค้นพบ"

หัวข้อที่ 1 นักวิทยาศาสตร์ผู้ค้นพบ "ข้อค้นพบของเมนเดล"

ฮิวโก เคอวรีย์

คาร์ล คอร์เรนส์

์ อีริค วอน เชอร์แม็ค

(Hugo De Vries)

(Carl Correns)

(Erich von Tschermack)

(ภาพจาก http://www.dnaftb.org/6/concept/index.html)

ในปี ค.ศ. 1865 เมนเดลตีพิมพ์ผลงานวิจัยชื่อ การทดลองในพืช

พันธุ์ผสม ซึ่งอธิบายแบบแผนปรากฏการณ์ที่เขาพบในการทำการ ทดลองผสมพันธุ์ต้นถั่วที่มีลักษณะแตกต่างกัน อย่างไรก็ตามงานวิจัย ฉบับนี้ของเมนเดลไม่ได้รับความสนใจจากผู้อื่นมากนัก แม้ว่าหลังจาก นั้นจะมีงานวิจัยทางวิทยาศาสตร์ตีพิมพ์ออกมาอีกมากมายแต่ก็ไม่มี ฉบับใดอ้างอิงถึงผลงานวิจัยของเมนเดลเลย

กิจกรรมที่ 6 ทำความรู้จัก นักวิทยาศาสตร์ผู้ค้นพบ "ข้อ ค้นพบของเมนเดล" และผู้ก่อตั้ง สาขาวิชาพันธุศาสตร์

จนกระทั่งในปี ค.ศ. 1900 นักวิทยาศาสตร์สามท่านซึ่งทำการศึกษาเกี่ยวกับกลไกการถ่ายทอด ลักษณะของสิ่งมีชีวิต ต่างก็ทำการทดลองซึ่งได้ผลแบบเดียวกับเมนเดล นักวิทยาศาสตร์ทั้งสามท่านได้ อ่านงานวิจัยของเมนเดลที่ตีพิมพ์ไว้ตั้งแต่เมื่อปี ค.ศ. 1865 และพบว่าผลงานวิจัยของตนเองสอดคล้องกับ สิ่งที่เมนเดลค้นพบ ไม่เพียงเท่านั้น ผลการวิจัยของเมนเดลถูกนำมาตีความหมายใหม่ว่า ข้อค้นพบของเมน เดลไม่ใช่เพียงการอธิบายผลลักษณะของลูกผสมที่เกิดขึ้นเท่านั้น แต่เป็นการอธิบายกลไกและแบบแผนที่ แน่นอนในการถ่ายทอดลักษณะของสิ่งมีชีวิต นักวิทยาศาสตร์ทั้งสามท่านนี้คือ ฮิวโก เดอวรีย์, คาร์ล คอร์ เรน และอีริค วอน เซอร์แม็ค

ฮิวโก เดอวรีย์ (Hugo de Vries, 1848-1935)

ฮิวโก เดอวรีย์เกิดที่เมืองฮาร์เล็ม ประเทศเนเธอร์แลนด์ แต่ศึกษา ระดับมหาวิทยาลัยในเยอรมันนี้ ระหว่างที่เรียนมหาวิทยาลัยเดอวรีย์ ศึกษาเกี่ยวกับสรีรวิทยาของพืช เมื่อเรียนจบได้เป็นอาจารย์สอนที่ มหาวิทยาลัยอัมสเตอร์ดัมจนกระทั่งเกษียณ เดอวรีย์เริ่มศึกษาวิจัย เกี่ยวกับการถ่ายทอดลักษณะทางพันธุกรรมของพืชตั้งแต่ปี ค.ศ. 1880 ก่อนที่เขาจะได้รู้จักงานวิจัยของเมนเดล และทำการทดลองผสมพันธุ์พืชมี ดอกหลายชนิด อย่างไรก็ตามจากผลการวิจัย เดอวรีย์ได้ข้อสรุปที่

เหมือนกับงานวิจัยของเมนเดล

ในปี ค.ศ. 1900 เดอวรีย์นำงานวิจัยที่ได้ข้อสรุปเหมือนงานของเมนเดลนี้ไปตีพิมพ์สองครั้ง ครั้งแรก เป็นภาษาฝรั่งเศสซึ่งไม่มีการกล่าวถึงเมนเดลแต่อย่างใด แต่ในครั้งที่สองซึ่งตีพิมพ์เป็นภาษาเยอรมันมีการ อ้างอิงถึงเมนเดล ซึ่งเรื่องนี้นักประวัติศาสตร์ตั้งข้อสังเกตว่า อาจเป็นไปได้ว่าเดอวรีย์ได้อ่านงานวิจัยของ เมนเดลก่อนที่จะตีพิมพ์ผลงานของตนเอง แต่ไม่ได้อ้างอิงเมนเดลจนกระทั่งทราบว่ามีนักวิทยาศาสตร์คน อื่นที่รู้จักงานของเมนเดลเช่นกันจึงได้เพิ่มการอ้างอิงผลงานของเมนเดลไปในงานวิจัยฉบับถัดมา

นอกจากงานวิจัยเกี่ยวกับการถ่ายทอดลักษณะทางพันธุกรรมของพืชแล้ว เดอวรีย์ยังเป็นที่รู้จักใน งานวิจัยเกี่ยวกับวิวัฒนาการของสิ่งมีชีวิต เดอวรีย์เชื่อว่าวิวัฒนาการของสิ่งมีชีวิตเกิดขึ้นจากที่สิ่งมีชีวิตมี การเปลี่ยนแปลงลักษณะหลายอย่างฉับพลันทันที หนึ่งในผลงานที่สำคัญของเดอวรีย์อีกชิ้นหนึ่งคือการ เสนอทฤษฎีว่าด้วยกลไกการผ่าเหล่าของสิ่งมีชีวิตซึ่งเป็นข้อสรุปที่ได้จากการทดลองและสังเกตการ เปลี่ยนแปลงลักษณะแต่ละรุ่นของต้นอีเวนนิ่ง พริมโรส

คาร์ล คอร์เรนส์ (Carl Correns, 1864-1933)

คาร์ล คอร์เรนส์ เกิดที่เมืองมิวนิค ประเทศเยอรมันนี คอร์เรนส์ เป็นเด็กกำพร้าได้รับการเลี้ยงดูจากป้าที่ประเทศสวิตเซอร์แลนด์ ในปี ค.ศ. 1885 คอร์เรนส์เข้าเรียนที่มหาวิทยาลัยมิวนิค ระหว่างนั้นเอง นาเกลี นักวิทยาศาสตร์คนเดียวกับที่เมนเดลเขียนจดหมายถึงได้รู้จักกับคอร์เรนส์ และสนับสนุนให้คอร์เรนส์มีความสนใจด้านพฤกษศาสตร์ และยังเป็นที่ ปรึกษางานวิจัยของคอร์เรนส์ด้วย

แต่เดิมคอร์เรนสนใจเรื่องกายภาพและวงชีวิตของมอสเป็นพิเศษซึ่งนำไปสู่การศึกษาเกี่ยวกับการ ปฏิสนธิและการสืบพันธุ์ของพืช จนกระทั่งเริ่มทำการทดลองเพื่อศึกษาเกี่ยวกับการถ่ายทอดลักษณะของ พืชอย่างจริงจังในปี ค.ศ. 1892 ซึ่งขณะนั้นเขาเป็นอาจารย์สอนอยู่ที่มหาวิทยาลัย Tübingen คอร์เรนส์เคย ได้ยินเกี่ยวกับงานวิจัยที่เมนเดลทำกับต้นฮอว์ควีดจากนาเกลี แต่ไม่เคยทราบเรื่องราวเกี่ยวกับงานวิจัยที่ เมนเดลทำกับต้นถั่วจากนาเกลีแต่อย่างใด

คอร์เรนส์เองทำการทดลองศึกษาลักษณะของทั้งต้นถั่วและข้าวโพดและได้พบว่าผลการทดลอง ของตนเองสอดคล้องกับที่เมนเดลเคยพบในอดีต ในรายงานการวิจัยของคอร์เรน เขาอธิบายถึงผลการ ทดลองในข้าวโพดอย่างละเอียดและอธิบายว่าปรากฏกาณ์เดียวกันได้เกิดขึ้นในต้นถั่วด้วย คอร์เรนส์กล่าว อย่างชัดเจนว่า สิ่งที่เขาค้นพบนี้เคยมีผู้กล่าวถึงมาแล้วคือเมนเดล ทำให้ผลงานของคอร์เรนส์นับเป็น เอกสารฉบับแรกที่เป็นหลักฐานให้เห็นว่ามีนักวิทยาศาสตร์ที่เข้าใจและให้ความสำคัญกับผลงานของเมน

คาร์ล คอร์เรนส์และฮิวโก เดอวรีย์นับเป็นนักวิทยาศาสตร์สองท่านที่มีบทบาทสำคัญในการสร้าง ความกระจ่างในงานวิจัยของเมนเดล และนำข้อค้นพบที่ได้มาตีความหมายใหม่นำไปสู่กฎของการรวมกลุ่ม อิสระและกฎของการแยกลักษณะในการถ่ายทอดลักษณะทางพันธุกรรมในเวลาต่อมา

คอร์เรนส์ทำการวิจัยเกี่ยวกับพันธุกรรมอย่างต่อเนื่อง ในปี ค.ศ. 1913 คอร์เรนส์ได้รับตำแหน่ง ผู้อำนวยการคนแรกของสถาบันวิจัยทางชีววิทยาแห่งหนึ่งในกรุงเบอร์ลิน เป็นที่น่าเสียดายที่ผลงานส่วน ใหญ่ของเขาไม่ได้รับการตีพิมพ์และถูกทำลายเมื่อกรุงเบอร์ลินถูกทิ้งระเบิดในปี ค.ศ. 1945

อีริค วอน เซอร์แม็ค (Erich von Tschermak, 1871-1962)

อีริค วอน เชอร์แม็ค เกิดที่เวียนนา ประเทศออสเตรีย บิดาเป็น ผู้เชี่ยวชาญทางแร่วิทยา คุณตาของเชอร์แม็คเป็นนักพฤกษศาสตร์ที่มี ชื่อเสียงและยังเป็นอาจารย์สอนเมนเดลด้วย เชอร์แม็คเรียนวิชาเกี่ยวกับ การเกษตรที่มหาวิทยาลัยเวียนนาแต่สำเร็จการศึกษาระดับปริญญาเอกที่ มหาวิทยาลัย ฮัลเลย์-วิทเทนเบอร์ก

เชอร์แม็คสนใจศึกษาเกี่ยวกับการผสมพันธุ์พืชและผลกระทบจากการผสม ข้ามสายพันธุ์เป็นพิเศษ ในปี ค.ศ. 1898 เชอร์แม็คเริ่มทำการทดลองผสม

พันธุ์พืชโดยใช้ต้นถั่ว และเช่นเดียวกับเดอวรีย์และคอร์เรนส์ เชอร์แม็คไม่เคยทราบผลการวิจัยของเมน เดลมาก่อน แต่จากการทดลองที่เขาทำขึ้นก็ให้ผลสรุปอันนำไปสู่กฎชองเมนเดลในปัจจุบัน อย่างไรก็ตาม เชอร์แม็คในเวลานั้นยังอายุน้อย และไม่เป็นที่รู้จักในสังคมวิทยาศาสตร์มากนัก เขาจึงวิตกกังวลว่าผลงาน ของตนเองจะไม่เป็นที่ยอมรับเท่ากับเดอวรีย์และคอร์เรนส์ อย่างไรก็ตามในที่สุดเชอร์แม็คก็ได้ตีพิมพ์ ผลงานวิจัยและกลายเป็นนักวิทยาศาสตร์อีกคนหนึ่งที่ได้รับความสนใจในฐานะนักวิทยาศาสตร์ผู้หนึ่งที่ ค้นพบความสำคัญของผลงานของเมนเดล

เชอร์แม็คเป็นนักผสมพันธุ์พืช งานวิจัยของเชอร์แม็คเน้นความสำคัญของการปรับปรุงพันธุ์พืชผล ทางการเกษตรโดยใช้กฎของการถ่ายทอดลักษณะทางพันธุกรรม ในปี ค.ศ. 1903 เชอร์แม็คได้รับตำแหน่ง ผู้ช่วยศาสตราจารย์ที่มหาวิทยาลัยทางการเกษตรในเวียนนา และภายหลังก็ได้รับตำแหน่งศาสตราจารย์ เชอร์แม็คมีบทบาทอย่างมากในการพัฒนาพันธุ์พืชและการเกษตรในประเทศออสเตรีย

หัวข้อที่ 2 ผู้ก่อตั้งสาขาวิชาพันธุศาสตร์

วิลเลียม เบทสันเป็นนักวิทยาศาสตร์ที่สนใจเรื่องเกี่ยวกับการ ถ่ายทอดพันธุกรรม และเชื่อว่าวิวัฒนาการของสิ่งมีชีวิตเช่นเดียวกับเดอว รีย์ว่า วิวัฒนาการเกิดขึ้นในลักษณะที่สิ่งมีชีวิตมีการเปลี่ยนลักษณะไป อย่างฉับพลันทันที ไม่ได้เกิดจากการปรับตัวตามสิ่งแวดล้อมอย่างช้าๆ และ ค่อยเป็นค่อยไปดังที่นักวิทยาศาสตร์หลายท่านเชื่อกัน เบทสันเป็นเพื่อน กับฮิวโก เดอวรีย์ จึงได้รับคำแนะนำจากเดอวรีย์ให้อ่านผลงานของเมนเดล เมื่อทำตามคำแนะนำของเพื่อน เบทสันก็ทราบทันทีว่าสามารถนำข้อค้นพบ

ของเมนเดลมาสนับสนุนแนวคิดเรื่องวิวัฒนาการของตนเองได้ เนื่องจากการทดลองของเมนเดล ทำให้เห็น การเปลี่ยนแปลงที่ไม่ต่อเนื่องของลักษณะ เช่น ถั่วรุ่นพ่อแม่ที่มีต้นสูง ให้ลูกที่มีต้นเตี้ยในรุ่นถัดไป โดยไม่ได้ มีการเปลี่ยนแปลงลักษณะแบบต้นถั่วค่อยๆเตี้ยลงทีละน้อยในลูกแต่ละรุ่น ด้วยเหตุที่เบทสันเป็นผู้ทรง อิทธิพลในวงการวิทยาศาสตร์สมัยนั้น การที่เบทสันสนับสนุนความคิดของเมนเดล จึงทำให้ทฤษฎีของเมนเดลได้รับการยอมรับและถูกนำไปใช้อย่างแพร่หลาย

ปี ค.ศ. 1902 เบทสันเขียนบทความวิเคราะห์ผลการทดลองของเมนเดลโดยน้ำผลการทดลองของ เมนเดลมาอธิบายด้วยหลักการและทฤษฎีที่ละเอียดขึ้น รวมทั้งมีการนิยามเฉพาะต่างๆซึ่งถูกนำมาใช้ทาง พันธุศาสตร์ในเวลาต่อมา

ในปี ค.ศ. 1905 เบทสันบัญญัติคำว่าพันธุศาสตร์เป็นครั้งแรก ซึ่งต่อมาในปี ค.ศ. 1906 เบทสันได้ นำศัพท์คำนี้ไปใช้ในการประชุมนานาชาติเรื่องการผลิตสิ่งมีชีวิตพันธุ์ผสมและการผสมพันธุ์พืช ส่งผลให้ การประชุมดังกล่าวถูกเปลี่ยนชื่อเป็น "การประชุมพันธุศาสตร์นาชาติ" ในเวลาต่อมา

ปี ค.ศ. 1910 เบทสัน ร่วมกับนักวิทยาศาสตร์อีกท่านคือ เรจินัลด์ พันเนทท์ (Reginald Punnett) ก่อตั้งวารสารพันธุศาสตร์ (the Journal of Genetics) เบทสันนับเป็นบุคคลที่บทบาทสำคัญอย่างยิ่งในการ ผลักดันพันธุศาสตร์ให้เป็นสาขาวิชาหนึ่งในวิทยาศาสตร์ อย่างไรก็ตาม เนื่องจากความก้าวหน้าใน การศึกษาทางพันธุศาสตร์มีจุดเริ่มต้นจากการทดลองของเมนเดล เมนเดลจึงได้รับการยกย่องเป็น บิดา แห่งพันธุศาสตร์ ดังที่เราทราบในปัจจุบัน

หัวข้อที่ 3 "ยืน" และ "กฎของเมนเดล" พื้นฐานสำคัญของวิชาพันธุศาสตร์

ภายหลังจากที่นักวิทยาศาสตร์หลายท่านเข้าใจและตระหนักถึงความสำคัญของข้อค้นพบของเมน เดล ข้อสรุปของเมนเดลได้ถูกนำมาอธิบายใหม่ มีการบัญญัติศัพท์หลายคำเพื่อให้เกิดความเข้าใจตรงกัน เกิดเป็นกฎการถ่ายทอดพันธุกรรมเพื่อใช้อธิบายแบบแผนของการถ่ายทอดลักษณะทางพันธุกรรมซึ่งแบบ แผนเดียวกันนี้สามารถใช้เพื่อคาดคะเนลักษณะของสิ่งมีชีวิตรุ่นลูกได้

1. ยีนกับการควบคุมลักษณะ

ยืน คือหน่วยทางพันธุกรรมที่ทำหน้าที่ควบคุมการถ่ายทอดลักษณะทางพันธุกรรมของ สิ่งมีชีวิต โดยส่วนใหญ่แล้วยืน 1 คู่ ทำหน้าที่ควบคุม 1 ลักษณะ ดังนั้นสิ่งมีชีวิต 1 ชนิดจึงมียืนมากมาย หลายคู่ทำหน้าที่ควบคุมลักษณะต่างๆ

2. ยืน กับ ลักษณะเด่น-ลักษณะด้อย

ในยีนหนึ่งคู่ ยีนหนึ่งสามารถข่มอีกยีนหนึ่งไม่ให้แสดงลักษณะออกมาได้ เช่น ถั่วรุ่น F1 ที่เกิด จากการผสมระหว่างถั่วที่มีเมล็ดสีเหลืองและถั่วที่มีเมล็ดสีเขียว มีทั้งยีนควบคุมเมล็ดสีเหลืองและยีน ควบคุมลักษณะสีเขียวอยู่ภายใน แต่แสดงเฉพาะลักษณะเมล็ดสีเหลืองออกมาเท่านั้น ยีนควบคุมเมล็ดสี เหลืองจึงเป็นยีนเด่น ส่วนยีนควบคุมเมล็ดสีเขียวเป็นยีนด้อย

3. กฎของเมนเดลกับอัตราส่วนที่แน่นอน

กฎของเมนเดลคือข้อความที่นักวิทยาศาสตร์สรุปได้จากการรวบรวมผลการสังเกตการ ถ่ายทอดลักษณะของสิ่งมีชีวิตของเมนเดล กฎนี้ได้มาจากการสังเกตแบบแผนของปรากฏการณ์และ สามารถนำไปใช้คาดคะเนผลการถ่ายทอดลักษณะอื่นในสิ่งมีชีวิตอื่นได้ นักประวัติศาสตร์ไม่ทราบแน่ชัด ว่าใครเป็นนักวิทยาศาสตร์คนแรกที่สร้างกฎของเมนเดล อย่างไรก็ตาม ในเวลาต่อมาเป็นที่แน่ชัดว่า กฎของเมนเดลเป็นที่ยอมรับในสังคมวิทยาศาสตร์ และถูกนำไปใช้อย่างแพร่หลาย กฎของเมนเดลมีสองข้อ คือ กฎของการแยกลักษณะ และกฎของการเข้าคู่อย่างอิสระ

กฎของการแยกลักษณะ กล่าวว่าคู่ของยืนที่ควบคุมลักษณะหนึ่งๆจะแยกออกจากกัน ระหว่างกระบวนการสร้างเซลล์สืบพันธุ์

กฎของการเข้าคู่อย่างอิสระ กล่าวว่า เมื่อมีการสืบพันธุ์ ลูกจะได้รับยีนจากเซลล์สืบพันธุ์ ของพ่อและแม่ที่เข้าคู่กัน โดยยีนที่ควบคุมแต่ละลักษณะจะเป็นอิสระจากกันและกัน เช่น การเข้าคู่ของยีนที่ ควบคุมความสูง ไม่เกี่ยวข้องกับยีนที่ควบคุมสีของเมล็ด

4. อัตราส่วนที่แน่นอนของลักษณะในรุ่นลูก

กฎของเมนเดลสามารถนำมาใช้ในการพยากรณ์ลักษณะของสิ่งมีชีวิตในรุ่นลูก โดยหากนำ สิ่งมีชีวิตที่มีลักษณะเด่นพันธุ์แท้ผสมกับลักษณะด้อย ลูกจะเป็นลักษณะเด่นพันธุ์ผสมเสมอ และเมื่อนำรุ่น ลูกมาผสมกัน จะได้ลูกรุ่นที่สองที่แสดงลักษณะเด่น : ลักษณะด้อยเป็นอัตราส่วน 3:1

คำศัพท์สำคัญต้องรู้

ยีน หมายถึงหน่วยทางพันธุกรรมที่ส่งผ่านข้อมูลทางพันธุกรรมของสิ่งมีชีวิตจากพ่อแม่ สู่ลูก และควบคุมลักษณะของสิ่งมีชีวิต

เซลล์สืบพันธุ์ หมายถึงเซลล์อสุจิของเพศผู้และเซลล์ไข่ของเพศเมีย ซึ่งเมื่อเกิดการ ปฏิสนธิจะรวมตัวกันเกิดเป็นตัวอ่อนของสิ่งมีชีวิต

ฟิโนไทป์ หมายถึงลักษณะที่ปรากฏของสิ่งมีชีวิต เช่น สูง เตี้ย เมล็ดกลม เมล็ดขรุขระ **จีโนไทป์** หมายถึง แบบของยืนที่อยู่เป็นคู่ๆ มักเขียนแทนด้วยตัวอักษรภาษาอังกฤษ
โดยตัวพิมพ์ใหญ่แสดงยีนเด่น และตัวพิมพ์เล็กแสดงยีนด้อย เช่น

T แทนยืนควบคุมความสูง

t แทนยืนควบคุมความเตี้ย

TT เป็นจีโนไทป์ เขียนแสดงแทนลักษณะทางพันธุกรรมที่มียืนเด่นเข้าคู่กันเอง ลักษณะนี้เรียกว่า พันธุ์แท้ ฟีโนไทป์ของสิ่งมีชีวิตจะแสดงลักษณะเด่น หรือลักษณะสูง

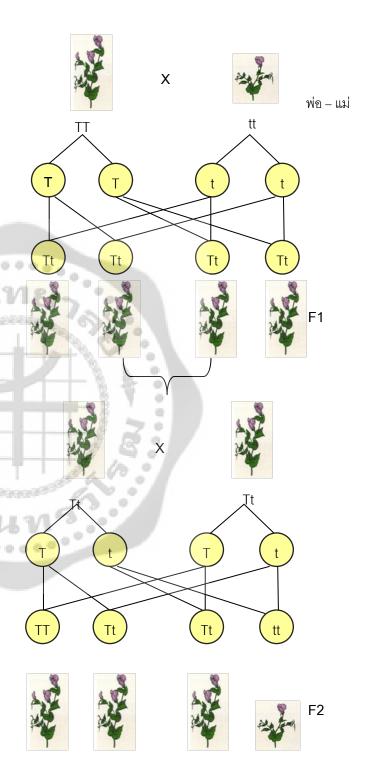
Tt เป็นจีโนไทป์ เขียนแสดงแทนลักษณะทางพันธุกรรมที่มียืนเด่นเข้าคู่กับยืนด้อถ

แผนภาพการถ่ายทอดลักษณะทางพันธุกรรมตามกฎของเมนเดล

ผสมถั่วรุ่นพ่อแม่ระหว่าง ลักษณะเด่นพันธุ์แท้ (TT) กับลักษณะด้อยพันธุ์แท้ (tt)

ยืนควบคุมลักษณะที่เดิมอยู่เป็นคู่ แยกออกจากกัน ระหว่างการสร้างเซลล์สืบพันธุ์

ยีนจากเซลล์สืบพันธุ์ของพ่อและแม่เข้าคู่กันอย่าง คิสระ


ได้ลูกที่จีโนไทป์ประกอบด้วยยืนจากพ่อและแม่ อย่างละครึ่ง แต่ฟีโนไทป์แสดงลักษณะเด่นทั้งหมด เนื่องจากยืนเด่นข่มยืนด้อย

น้ำถั่วรุ่น F1 ซึ่งเป็นลักษณะเด่นพันธุ์ผสม (Tt) มา ผสมกันเอง

ยืนควบคุมลักษณะที่เดิมอยู่เป็นคู่ แยกออกจากกัน ระหว่างการสร้างเซลล์สืบพันธุ์

ยีนจากเซลล์สืบพันธุ์ของพ่อและแม่เข้าคู่กันอย่าง อิสระ

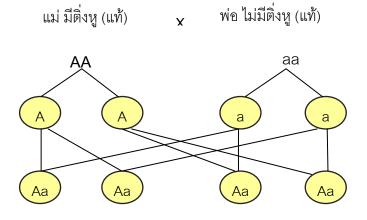
ได้ลูกที่จีโนไทป์ประกอบด้วยยืนจากพ่อและแม่ อย่างละครึ่ง ฟีโนไทป์แสดงลักษณะเด่น : ลักษณะ ด้อย เป็นอัตราส่วน 3:1 ในจำนวนนี้เป็น ลักษณะ เด่นพันธ์แท้ : ลักษณะเด่นพันธุ์ผสม : ลักษณะด้อย พันธ์แท้เท่ากับ 1:2:1

หัวข้อที่ 4 การศึกษาการถ่ายทอดพันธุกรรมในมนุษย์

การนำกฎของเมนเดลไปใช้ไม่ได้จำกัดเฉพาะกับพืช เท่านั้น จากการศึกษาของนักวิทยาศาสตร์ทำให้ทราบว่า การ ถ่ายทอดพันธุกรรมของสัตว์ชนิดอื่นๆ และมนุษย์ก็เป็นไปตาม กฎของเมนเดลเช่นกัน

กิจกรรมที่ 7

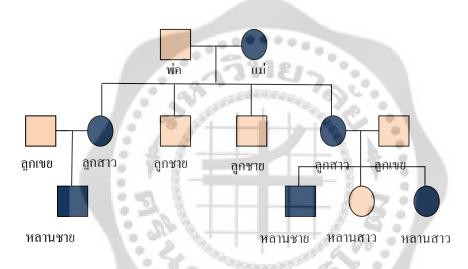
สังเกตลักษณะของเพื่อน และฝึก บันทึกผลการสังเกต


ตัวอย่าง ลักษณะมีติ่งหู และไม่มีติ่งหู

มีติ่งห (ยีนเด่น)

ไม่มีติ่งห (ยีนด้าย)

ถ้ากำหนดให้ แม่ มีติ่งหู (แท้) จีโนไทป์เป็น AA
พ่อ ไม่มีติ่งหู (แท้) จีโนไทป์เป็น aa
การถ่ายทอดพันธุกรรมสู่ลูกจะเป็นดังนี้



ลูกมีลักษณะที่มีติ่งหูแต่มียืนด้อยแฝงอยู่ 100%

พงศาวลี

การศึกษาพันธุกรรมมนุษย์ไม่สามารถทำโดยการนำมนุษย์มาเลี้ยงในห้องทดลองและควบคุมการ สืบพันธุ์เหมือนที่ทำในพืชและสัตว์ได้ เนื่องจาก การทดลองเช่นนี้นอกจากจะผิดศีลธรรมแล้ว มนุษย์ยังเป็น สิ่งมีชีวิตที่มีวงชีวิตยาวนาน ทำให้ต้องใช้เวลาหลายปี ในการศึกษาลูกหลานแต่ละรุ่น นอกจากนี้ครอบครัว ส่วนใหญ่ยังให้กำเนิดลูกน้อยเกินกว่าที่จะหาอัตราส่วนได้เหมือนผลการทดลองผสมพันธุ์ต้นถั่วของเมนเดล ที่ให้ผลหลายพันธุ์ต้น ดังนั้นการศึกษาการถ่ายทอดลักษณะทางพันธุกรรมของมนุษย์จึงทำโดยการสืบ ประวัติและบันทึกข้อมูลจากพงศาวลีของครอบครัว

ตัวอย่าง การเขียนพงศาวลี (สีเข้ม แสดงว่าบุคคลนั้นมีลักษณะที่เราสนใจศึกษา)

หัวข้อที่ 5 พันธุศาสตร์ยุคแรกกับสังคม

กิจกรรมที่ 8 จะดีหรือไม่ ถ้าเราควบคุม การถ่ายทอดพันธุกรรมของมนุษย์ให้มี ลักษณะดังใจต้องการ

อภิปรายร่วมกับเพื่อนถึงข้อดีและ ข้อเสียของการปรับปรุงพันธุกรรมมนุษย์ แล้วทำกิจกรรมบทบาทสมมติเรื่อง ยูจีนิคส์

ยูจีนิคส์ แนวคิดการปรับปรุงพันธุ์มนุษย์

ในปี ค.ศ. 1883 นักวิชาการกลุ่มหนึ่งซึ่งเป็นชนชั้นสูงในอังกฤษได้ก่อตั้งสาขาวิชาว่าด้วยการศึกษา เกี่ยวกับการปรับปรุงพันธุ์มนุษย์ หรือเรียกว่า "ยูจีนิคส์" บุคคลกลุ่มนี้เชื่อว่า ลักษณะทุกประการของมนุษย์ ล้วนแต่ถูกถ่ายทอดทางพันธุกรรมตั้งแต่ลักษณะที่ปรากฏทางกายภาพ เช่น รูปร่างหน้าตา สีผิว สีผม ไป จนถึงจิตใจและสติปัญญา และเราสามารถสร้างสังคมที่ดีได้ด้วยการควบคุมและปรับปรุงพันธุ์มนุษย์ให้มี แต่ "ยีนดี" โดยการควบคุมมนุษย์ที่มีลักษณะของยีนดีให้สืบพันธุ์ให้ลูกหลานมากขึ้น และควบคุมมนุษย์ที่มี ลักษณะอันไม่พึงประสงค์ในสังคมให้ยุติการสืบพันธุ์ ซึ่งมนุษย์ที่มีลักษณะของยีนดีที่นักวิชาการกลุ่มนี้ หมายถึงก็คือผู้ที่มีผิวขาว สติบัญญาดีและมีฐานะร่ำรวย

หลังจากการค้นพบทฤษฎีของเมนเดลอีกครั้งในปี ค.ศ. 1900 สาขาวิชาว่าด้วยการปรับปรุง พันธุ์มนุษย์ได้รับความนิยมอย่างแพร่หลายไปยังนานาประเทศโดยเฉพาะในสหรัฐอเมริกาและยุโรปซึ่ง เป็นสังคมของคนผิวขาว ก่อให้เกิดความเคลื่อนไหวทางการเมืองเพื่อรองรับแนวคิดการปรับปรุงพันธุ์มนุษย์ บางส่วนของสหรัฐอเมริกาและประเทศในยุโรปบางประเทศมีการออกกฎหมายเพื่อการปรับปรุงพันธุ์มนุษย์ โดยการบังคับผู้ที่ถูกนิยามว่ามีลักษณะไม่ดี เช่น สติปัญญาด้อย หรือมีความผิดปกติทางจิตให้ทำหมัน รวม ไปถึงควบคุมการอพยพของคนต่างด้าวอย่างเคร่งครัดเพื่อไม่ให้นำยีนไม่ดีมาปะปนในสังคม ในยุคนี้มี องค์กรสถาบันการวิจัยเกี่ยวกับการศึกษาเพื่อปรับปรุงพันธุ์มนุษย์เกิดขึ้นมากมาย องค์กรเหล่านี้ให้เงิน สนับสนุนการวิจัยที่ในการสืบพงศาวลีของประชากรเพื่อเก็บข้อมูลการถ่ายทอดลักษณะที่ไม่พึงประสงค์ ต่างๆ เช่น สติปัญญาด้อย ความผิดปกติทางจิต เป็นต้น

กระแสนิยมในแนวคิดการปรับปรุงพันธุ์มนุษย์ขยายไปในวงกว้าง รวมถึงการฆ่าล้างเผ่าพันธุ์ ชาวยิวและชาวโรมาเนียในสงครามโลกครั้งที่สอง จนทำให้เกิดกระแสต่อต้านแนวคิดนี้อย่างรุนแรง เนื่องจากมีข้อโต้แย้งในเรื่องของสิทธิมนุษยชน และวิธีการวิจัยที่มีความคลาดเคลื่อนสูงเนื่องจาก อคติของนักวิทยาศาสตร์ผู้ทำการวิจัย และข้อมูลบางอย่างที่ยากจะเก็บได้อย่างแม่นยำ เช่น สติปัญญา ไปจนถึงข้อเท็จจริงที่มีการค้นพบต่อมาว่า กลไกการถ่ายทอดลักษณะทางพันธุกรรมมีความ สลับซับซ้อนเกินกว่าจะอธิบายได้ด้วยกฎของเมนเดล โดยเฉพาะลักษณะบางอย่าง เช่น ระดับ สติปัญญาไม่ได้ขึ้นกับการถ่ายทอดทางพันธุกรรมเพียงอย่างเดียว หนึ่งในผู้ที่ใต้แย้งแนวคิดการปรับปรุง พันธุกรรมมนุษย์ก็คือโทมัส อันท์ มอร์แกน นักวิทยาศาสตร์ผู้ค้นพบความเชื่อมโยงระหว่างยีนและ โครโมโซม

หลังจากเกิดกระแสต่อต้าน แนวคิดในการปรับปรุงพันธุ์มนุษย์ก็เสื่อมความนิยมลง และในที่สุด องค์กรต่างๆที่ให้การสนับสนุนการวิจัยว่าด้วยการปรับปรุงพันธุ์มนุษย์ก็ปิดตัวลง ส่งผลให้การวิจัยที่ เกี่ยวข้องกับสาขาวิชาการปรับปรุงพันธ์มนุษย์ต้องยุติลงตามลำดับ

สรุปสาระสำคัญของหน่วยการเรียนรู้ที่ 2

1. กฎการถ่ายทอดลักษณะทางพันธุกรรมของเมนเดล

การแสดงออกลักษณะทางพันธุกรรมของลูกเป็นผลจากการเ**ข้าคู่กันระหว่างยีนของพ่อและแม่** โดยยืนที่ควบคุมแต่ละลักษณะจะ**ถ่ายทอดอย่างเป็นอิสระ**จากยืนควบคุมลักษณะอื่น

2. กระบวนการสืบเสาะหาความรู้ทางวิทยาศาสตร์

กระบวนการที่สำคัญในการสืบเสาะหาความรู้ทางวิทยาศาสตร์ คือ **การสังเกต** เพื่อรวบรวมข้อมูล และข้อเท็จจริงเกี่ยวกับปรากฏการณ์ที่สนใจ และ**การตีความหมายข้อมูล**ที่รวบรวมได้ โดยใช้พื้น ฐานความรู้ และทฤษฎีที่นักวิทยาศาสตร์เชื่อถือ เพื่อสร้างข้อสรุปเกี่ยวกับปรากฏการณ์ต่างๆ ข้อสรุปของ นักวิทยาศาสตร์จะมีความน่าเชื่อถือหากได้รับ**การทดสอบซ้ำ**แล้วได้ผลเหมือนเดิม

3. ผลกระทบระหว่างวิทยาศาสตร์และสังคม

อิทธิพลของสังคมต่อการสืบเสาะหาความรู้ทางวิทยาศาสตร์

สังคมมีผลต่อความเจริญก้าวหน้าทางวิทยาศาสตร์ การศึกษาหาความรู้ในเรื่องที่สังคมให้ความ สนใจมีแนวโน้มที่จะได้รับการสนับสนุนและพัฒนามากกว่าเรื่องที่สังคมไม่ให้ความสำคัญ นอกจากนี้สังคม ยังมีอิทธิพลต่อความเชื่อของนักวิทยาศาสตร์ ซึ่งส่งผลต่อการสังเกต และการตีความหมายในการทำงาน ของนักวิทยาศาสตร์

อิทธิพลของการสืบเสาะหาความรู้ทางวิทยาศาสตร์ต่อสังคม

การนำความรู้ทางวิทยาศาสตร์ไปใช้ก่อให้เกิดผลกระทบต่อสังคมทั้งเชิงบวกและลบ ความรู้ทาง วิทยาศาสตร์อาจถูกนำไปใช้ประโยชน์เพื่อพัฒนาคุณภาพชีวิตและความสะดวกสบายของมนุษย์ แต่ใน ขณะเดียวกันการนำความรู้ทางวิทยาศาสตร์ไปใช้บางครั้งก็อาจก่อให้เกิดข้อโต้แย้ง หรือผลกระทบในด้าน ต่างๆ เช่น บทเรียนจากยุคปรับปรุงพันธุ์มนุษย์ที่ก่อให้เกิดปัญหาการละเมิดสิทธิมนุษยชน ดังนั้นการ ตัดสินใจนำความรู้ทางวิทยาศาสตร์เรื่องหนึ่งๆไปใช้ควรพิจารณาถึงผลกระทบที่อาจเกิดขึ้นกับบุคคลและ สังคมด้วย

บรรณานุกรม

- กระทรวงศึกษาธิการ. (2544). หนังสือเรียนสาระการเรียนรู้พื้นฐาน ชีวิตกับสิ่งแวดล้อม สิ่งมีชีวิตกับ กระบวนการดำรงชีวิต กลุ่มสาระการเรียนรู้วิทยาาสตร์. กรุงเทพ: โรงพิมพ์คุรุสภาลาดพร้าว.
- ปรินทร์ ชัยวิสุทธางกุร. (2544). จีเอ็มโอ. กรุงเทพฯ: องค์การค้าของคุรุสภา.
- วิริยะ สิริสิงห์. (2537). ชีววิทยา Essential Atlas of Biology. Translated by รักษาศรี, สมใจ. กรุงเทพฯ: ชมรมเด็ก.
- ศูนย์วิทยาศาสตร์ข้าวและหน่วยปฏิบัติการค้นพาและใช้ประโยชน์ยีนข้าว. (2552). จีโนมข้าว ยีน?

 Retrieved 18 มกราคม 2553, from http://dna.kps.ku.ac.th/index.php/บทความของศูนย์/
 จีโนมข้าว-ยีน.htm
- สุทัศน์ ฟูเจริญ และ สุพรรณ ฟูเจริญ. (2552). โรคธาลัสซีแมียป้องกันได้. Retrieved 19 มกราคม, from http://www.biotec.or.th/biotechnology-th/newsdetail.asp?id=5488
- Darden, Lindley. (1991). *Theory Change in Science Strategies from Mendelian Genetics*. New York: Oxford University Press.
- Eubios Ethics Institute. (2005). *A Cross-Cultural Introduction to Bioethics*. Retrieved January 17, 2010, from http://www.unescobkk.org/index.php?id=2508
- Everson, Ted. (2007). The Gene a Historical Perspective. Westport: Greenwood Press.
- Gelsinger, Paul. (2009). *Jesse's Intent*. Retrieved January 18, 2010, from http://www.guineapigzero.com/jesse.html
- Gould, Stephen Jay. (1996). The Mismeasure of Man. New York: W.W. Norton & Company.
- Johnson, George B. (1998). Biology Visualizing Life. Austin: Holt, Reinhart and Winston.
- Lederman, N.G.; & Abd-El-Khalick, F. (1998). Avoiding De-Natured Science: Activities That

 Promote Understandings of the Nature of Science. In *The Nature of Science in Science*Education: Rationales and Strategies. Edited by McComas, W.F. Dordrecht, The

 Netherlands: Kluwer Academic Publishers.

Office of Science U.S. Department of Energy. (2008). *Human Genome Project Information*. Retrieved January 18, 2010,

from http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

Schwartz, James. (2008). In Pursuit of the Gene. Masssachusetts: Harvard University Press.

Sturtevant, A.H. (2001). *A History of Genetics*. Cold Spring Habor, New York: Cold Spring Habor Laboratory Press.

APPENDIX C

- แบบสอบถามความเข้าใจในธรรมชาติของวิทยาศาสตร์
- แบบสอบถามการตัดสินใจในประเด็นปัญหาเกี่ยวกับ วิทยาศาสตร์
- แบบวัดความเข้าใจในเนื้อหาสาระพันธุศาสตร์

แบบสอบถามความเข้าใจในธรรมชาติของวิทยาศาสตร์

สำหรับนักเรียนชั้นมัธยมศึกษาตอนต้น

ชื่อ-นามสกุล		
ชั้น	เลขที่	โรงเรียน
วันที่		

🌟 คำชี้แจง

- 1. ให้นักเรียนอ่านข้อความต่อไปนี้ และตอบคำถามลงในพื้นที่ที่กำหนดให้ นักเรียนสามารถใช้ พื้นที่ว่างด้านหลังของแบบสอบถามเพื่อตอบคำถามได้
- 2. แบบสอบถามนี้ไม่ใช่การทดสอบ แต่ละข้อคำถามไม่มีคำตอบที่ "ถูก" หรือ "ผิด" ผู้วิจัยเพียงแต่ ต้องการทราบความคิดเห็นของนักเรียนเท่านั้น
- 3. คำตอบของนักเรียนมีค่าอย่างยิ่งต่อการพัฒนาการเรียนการสอนวิทยาศาสตร์ โปรดตอบคำถาม อย่างละเอียด

1. วิทยาศาสตร์คืออะไร ลักษณะใดบ้างที่ทำให้วิทยาศาสตร์แตกต่างจากศาสตร์สาขาอื่น
(เช่น ศิลปะ สังคมศาสตร์)
ตอบ
2. ให้นักเรียนอธิบายเกี่ยวกับกฎ และทฤษฎีทางวิทยาศาสตร์ ในแง่มุมต่อไปนี้
2.1 ในหนังสือเรียนของนักเรียนประกอบด้วยกฎและทฤษฎีทางวิทยาศาสตร์มากมาย นักเรียน
คิดว่า กฎและทฤษฎีเหล่านั้นเปลี่ยนแปลงได้หรือไม่ ตอบ
2.2 จากข้อ 2.1 เพราะเหตุใดนักเรียนจึงคิดเช่นนั้น
ตอบ
3NE)
2.3 ยกตัวอย่าง กฎและทฤษฎีที่มีการเปลี่ยนแปลง (หรือไม่เปลี่ยนแปลง) ประกอบคำตอบขั้
2.1 และ 2.2
ตอบ
V:31+++/3://
100
3. ให้นักเรียนอธิบายเกี่ยวกับวิธีการหรือขั้นตอนการดำเนินงานเพื่อสืบเสาะหาความรู้ทาง
วิทยาศาสตร์ของนักวิทยาศาสตร์ในแง่มุมต่อไปนี้ 3.1 นักวิทยาศาสตร์มีวิธีการหรือขั้นตอนการดำเนินงานเพื่อสืบเสาะหาความรู้ในเรื่องหนึ่งๆ
อย่างไร
ตอบ
3.2 นักวิทยาศาสตร์ทุกคน จำเป็นต้องดำเนินงานตามวิธีการหรือขั้นตอนดังกล่าวในข้อ 3.1 เสมอไป <u>หรือไม่</u> <u>เพราะเหตุใด</u> ตอบ

3.3 นักเรียนคิดว่ามีกระบวนการใดบ้างที่ "สำคัญและขาดไม่ได้" ในการดำเนินงานเพื่อสืบ
เสาะหาความรู้ทางวิทยาศาสตร์
ตอบ
4. ให้นักเรียนอ่านข้อความข้างล่าง และตอบคำถามข้อ 4.1 – 4.3
"นักวิทยาศาสตร์สองคน ทำการสืบเสาะหาความรู้ทางวิทยาศาสตร์ในหัวข้อเดียวกัน โดยที่ทั้งสอง คนต่างไม่เคยพบเห็นหรือพูดคุยกันเลย"
4.1 นักเรียนคิดว่านักวิทยาศาสตร์ทั้งสองคน จะสร้างข้อสรุปจากการสืบเสาะหาความรู้ เหมือนกันหรือไม่
ตอบ
4.2 จากข้อ 4.1 <u>เพราะเหตุใด</u> นักเรียนจึงคิดเช่นนั้น และ <u>ยกตัวอย่างประกอบ</u> คำตอบของ
นักเรียน
ตอบ
4.3 หากนักเรียนคิดว่า นักวิทยาศาสตร์สองคนอาจสร้างข้อสรุปแตกต่างกัน ให้ <u>อธิบาย</u> ว่ามี
ปัจจัยใดบ้างที่ส่งผลต่อการสืบเสาะหาความรู้และสร้างข้อสรุปทางวิทยาศาสตร์ <u>และยกตัวอย่าง</u> ให้มาก ที่สุด (นักเรียนที่ตอบว่า นักวิทยาศาสตร์สองคนสร้างข้อสรุปเหมือนกันเสมอ ไม่ต้องตอบคำถามข้อนี้)
ตอบ
5. ให้หักเรียนอ่านข้อความข้างล่าง และตอบคำถามข้อ 5.1 – 5.3
"วิทยาศาสตร์ขึ้นกับเหตุผลและข้อเท็จจริงเท่านั้น การดำเนินงานทางวิทยาศาสตร์ต้องปราศจาก ความคิดเห็นส่วนตัวและจินตนาการของนักวิทยาศาสตร์โดยสิ้นเชิง"
5.1 นักเรียนเห็นด้วยกับข้อความนี้หรือไม่
ଉବ୍ୟା

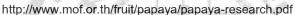
5.2 จากข้อ 5.1 เพราะเหตุใดนักเรียนจึงคิดเช่นนั้น
ตอบ
5.3 หากนักเรียนคิดว่า ความคิดเห็นส่วนตัวและจินตนาการมีความเกี่ยวข้องกับการดำเนินงาทางวิทยาศาสตร์ ให้ <u>ยกตัวอย่าง</u> ว่า นักวิทยาศาสตร์ต้องใช้ความคิดเห็นส่วนตัวและจินตนาการในกาสีบเสาะหาความรู้อย่างไรและเมื่อใด
พอก
6. ให้นักเรียนอ่านข้อความข้างล่าง และตอบคำถามข้อ 6.1 – 6.3
"วิทยาศาสตร์และสังคมส่งผลกระทบซึ่งกันและกัน"
6.1 นักเรียนเห็นด้วยกับข้อความนี้หรือไม่
ตอบ
ตอบ
6.3 หากนักเรียนเห็นด้วยกับข้อความนี้ ให้อธิบายว่า วิทยาศาสตร์และสังคมส่งผลกระทบซ็
กันและกันใน <u>ลักษณะใดได้บ้าง</u> <u>ยกตัวอย่างประกอบ</u> ให้ชัดเจน ตอบ

ขอบคุณสำหรับการตอบคำถามค่ะ

แบบสอบถามการตัดสินใจในประเด็นปัญหาเกี่ยวกับวิทยาศาสตร์

สำหรับนักเรียนระดับชั้นมัธยมศึกษาตอนต้น

ส่ ชื่อ-นามสกล	
··· เลขที่ชั้น	โรงเรียง
- 1	
วันที	To all receives to contract the contract to th


คำชี้แจง

- 1. แบบสอบถามนี้ประกอบด้วย สถานการณ์ที่เป็นประเด็นปัญหาที่เกี่ยวข้องกับวิทยาศาสตร์ และ คำถามให้นักเรียนตัดสินใจเกี่ยวกับประเด็นปัญหานั้นๆ
- 2. ให้นักเรียนอ่านสถานการณ์ให้เข้าใจ และตอบคำถามลงในช่องว่าง หากพื้นที่ในการตอบคำถาม ไม่เพียงพอ นักเรียนสามารถใช้พื้นที่ว่างด้านหลังของกระดาษในการตอบคำถามได้
- 3. แบบสอบถามนี้ไม่ใช่การทดสอบ แต่ละข้อคำถามไม่มีคำตอบที่ "ถูก" หรือ "ผิด" ผู้วิจัยเพียงแต่ ต้องการทราบความคิดเห็นของนักเรียนเท่านั้น
- 4. คำตอบของนักเรียนจะเป็นประโยชน์อย่างยิ่งสำหรับการพัฒนาการเรียนการสอนวิทยาศาสตร์ โปรดตอบคำถามให้ละเอียด

สถานการณ์ที่ 1 มะละกอจีเอ็มโอ

มะละกอเป็นพืชที่มีความต้องการในการบริโภคสูงในประเทศไทย อย่างไรก็ตามเกษตรกร
ประสบปัญหาอย่างมากในการปลูกมะละกอเนื่องจากการระบาดของโรคจุดวงแหวนซึ่งเกิดจากเชื้อไวรัส
โดยมีเพลี้ยเป็นพาหะ แม้ว่านักวิชาการเกษตรจะแก้ปัญหาโดยผลิตมะละกอสายพันธุ์ใหม่ที่มีความ
ต้านทานโรค โดยการผสมพันธุ์ระหว่างมะละกอแขกดำของไทย กับมะละกอฟลอริดาของต่างประเทศ
อีกไม่กี่ปีต่อมาก็เกิดการะบาดของโรคจุดวงแหวนอีก นักวิทยาศาสตร์ไทยจึงศึกษาร่วมกับ
นักวิทยาศาสตร์ต่างชาติ พัฒนามะละกอดัดแปรพันธุกรรม หรือ มะละกอจีเอ็มโอ (GMO) ที่มีความ
ต้านทานโรคได้สำเร็จ กลุ่มนักวิทยาศาสตร์ผู้พัฒนามะละกอจีเอ็มโอ รายงานว่า มะละกอจีเอ็มโอ ที่
พัฒนาขึ้นสามารถให้ผลผลิตต่อไร่ได้สูงกว่ามะละกอปกติถึง 200 เท่า และมีคุณค่าทางอาหารเหมือนกับ
มะละกอปกติ มีความปลอดภัย สามารถบริโภคได้ และไม่เป็นอันตรายต่อสิ่งแวดล้อม

ที่มา : เรียบเรียงจาก http://www.phtnet.org/article/

คำถาม

1. หากนักเรียนทราบว่า มะละกอหรือผลิตภัณฑ์จากมะละกอ (เช่น สัมตำ มะละกออบแห้ง) ที่กำลัง
จะรับประทานเป็นมะละกอจีเอ็มโอ นักเรียนจะยังรับประทานหรือไม่ เพราะเหตุใด
331M53.
Suns.
2. ปัจจัยใดบ้า งที่นักเรียนคิดว่าสำคัญต่อนักเรียนในการตัดสินใจว่าจะรับประทานมะละกอจีเอ็มโอ
หรือไม่ และข้อมูลที่กำหนดให้ เพียงพอสำหรับนักเรียนในการตัดสินใจ หรือไม่
······

	3.	หากร์	ข้อมูล	ที่ก้าห	นดให้	ใม่เขี	ไยงพ	อ ในเ	าารดั′	าเนินเ	าารตั้เ	คสินใ <i>เ</i>	จ นัก	เรียน	เคิดว่า	า นัก	เรียน	ต้องก	าร
ข้อมู	ା ରପ:	ะไรเพิ่	มเติม	อีกบ้า	٩														
	-																		

สถานการณ์ที่ 2 รักษาโรคด้วยยืนบำบัด

ยืนบำบัด เป็นวิธีการรักษาโรคแบบหนึ่งโดยการใช้เทคโนโลยีพันธุวิศวกรรมในการสอดแทรก ยืนที่ปกติเข้าไปแทนที่ยืนที่ทำงานบกพร่องในเซลล์ของผู้ป่วย ซึ่งเทคโนโลยีนี้ถือเป็นสัญญาณที่ดี สำหรับผู้ป่วยโรคพันธุกรรมและโรคที่รักษาไม่หาย เช่น มะเร็ง

ดาว เป็นผู้ป่วยที่เพิ่งทราบว่าตนเองเป็นโรคมะเร็งในเม็ดเลือด นายแพทย์ผู้เชี่ยวชาญของ โรงพยาบาลเอกชนที่ดาวกำลังรักษาตัวอยู่แนะนำให้ดาวรักษาโรคมะเร็งด้วยวิธียีนบำบัด โดยอธิบายว่า

"ปัจจุบันในประเทศไทยการรักษาด้วยพันธุกรรมบำบัด กำลังได้รับความ สนใจจากวงการแพทย์เป็นอย่างมาก การรักษาด้วยวิธีนี้เกิดขึ้นมานานพอสมควร แล้ว ประมาณ 4-5 ปี และผลการตอบสนองก็ดีกว่าวิธีเก่า เพราะยาที่ใช้รักษาผลิต มาจากความรู้เรื่องยืน ซึ่งจะตรงเข้าไปทำลายเซลล์มะเร็งโดยไม่ทำลายเซลล์ปกติ ส่วนอื่นของร่างกาย ในปัจจุบันผลการรักษาของเราก็มีประมาณ 65-70% ที่ได้ผล ตอบสนองที่ดี แต่ก็ต้องเรียนให้ทราบว่าคนไข้ส่วนใหญ่ที่มาหาเรา มักจะผ่านการ รักษาโดยวิธีอื่นมาหมดแล้ว แล้วผลตอบสนองที่บอกว่า 65-70% ก็เป็น ผลตอบสนองที่เรามองในวงกว้าง แนวโน้มของวิธีการรักษาด้วยยืนบำบัดนี้ กำลัง จะมาแทนที่การรักษาแบบเก่าเพราะมันเป็นสิ่งที่คนทั่วโลกหันมาพิจารณา และ สนใจกันมากขึ้น เพราะฉะนั้นในระยะเวลาอันสั้น การรักษาโดยวิธีการนี้จะมา แทนที่การให้ดีโม เพราะว่าอะไรก็ตามการรักษาที่ตรงเป้าหมายนี้จะดีที่สุด"

ที่มา : ข้อมูลบางส่วนจาก http://www.piyavate.com/gene-therapy_th.php

คำถาม

	1.	นักเรียนคิดว่าดาวได้รับข้อมูลทีเ พียงพอ และเหมา ะสมต่อการตัดสินใจรักษาโรคด้วยยืนบำบัด
		หรือไม่ เพราะเหตุใด
		q
•••		
•••	2.	มีข้อมูลใดอีกบ้างที่นักเรียนคิดว่าดาวควรจะทราบเพื่อประโยชน์ในการตัดสินใจ
		¥
		() ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
	3.	หากนักเรียนเป็นดาว จะตัดสินใจรับการรักษามะเร็งด้วยยืนบำบัดหรือไม่ เพราะเหตุใด
•••		7674 THE DATA 3
•••		

สถานการณ์ที่ 3 พันธุวิศวกรรมกับการยับยั้งโรคมาลาเรีย

โรคมาลาเรียเป็นโรคติดต่อที่อันตรายถึงชีวิตและยากที่จะรักษาให้หายได้ **ต้นเหตุของโรค**มาลาเรียเกิดจากเชื้อปรสิตชนิดหนึ่งซึ่งมียุงกันปล่องเป็นพาหะ เราอาจป้องกันตนเองจากโรค
มาลาเรียได้ทางหนึ่ง โดยการทายากันยุงหรือใช้มังกันยุงเพื่อป้องกันยุงกัด แต่บางครั้งเราก็ไม่อาจ
หลีกเลี่ยงและกำจัดยุงให้หมดสิ้นไปได้ ดังนั้นนักวิทยาศาสตร์จึงพยายามหาจุดอ่อนในวงจรชีวิตของ
ยุงกันปล่อง เพื่อหาวิธีป้องกันโรคมาลาเรีย และพบว่าสามารถนำเทคโนโลยีพันธุวิศวกรรมมาใช้ใน
การกำจัดเชื้อมาลาเรียได้โดยการเติมยีนเข้าไปในยุงกันปล่อง ยีนนี้ทำให้ยุงกันปล่องย่อยปรสิต
ที่ก่อโรคมาลาเรียให้หมดไป และสืบพันธุ์ให้ยุงรุ่นลูกหลานที่ปราศจากปรสิตมาแทนที่
ยุงกันปล่องทั่วไป ในอนาคต ยุงกันปล่องที่ก่อโรคมาลาเรียก็จะลดจำนวนลงจนหมดไป ซึ่งเมื่อ
นักวิทยาศาสตร์เมื่อทำการทดลองนี้กับยุงที่ก่อโรคมาลาเรียในหนู พบว่าประสบผลสำเร็จดี จึงมีความคิด
ที่จะนำเทคโนโลยีดังกล่าวมาดัดแปรพันธุกรรมยุงกันปล่องที่ก่อโรคมาลาเรียในคน และปล่อยยุงที่ดัด
แปรพันธุกรรมแล้วสู่ชุมชนที่มีโรคมาลาเรียระบาด ที่มา : www.up8.org.uk

คำถาม

 หากชุมชนของนักเรียนกำลังประสบปัญหาโรคมาลาเรียระบาด นักเรียนคิดว่าจะสนับสนุน ให้นักวิทยาศาสตร์นำยุงดัดแปรพันธุกรรมมาปล่อยในชุมชนหรือไม่
2. ปัจจัยใดบ้าง ที่นักเรียนคิดว่าสำคัญต่อนักเรียนในการตัดสินใจเกี่ยวกับการสนับสนุนการ ปล่อยยุงดัดแปรพันธุกรรมในชุมชน และ ข้อมูลที่กำหนดให้ เพียงพอ สำหรับนักเรียนในการตัดสินใจ หรือไม่
3. หากนักเรียนคิดว่าข้อมูลที่กำหนดให้ไม่เพียงพอที่จะใช้ตัดสินใจ นักเรียนคิดว่าต้องการ
ข้อมูลอะไรเพิ่มเติมอีกบ้าง

😊 ขอบคุณสำหรับความร่วมมือในการตอบคำถามค่ะ 😊

APPEXDIX D ผลการประเมินหลักสูตรโดยผู้เชี่ยวชาญ

APPROPRIATENESS OF THE DRAFT CURRICULUM

List of Evaluation	IOC	Meaning
Appropriateness of curriculum rationale		
1. The curriculum rationale emphasize on solving problems of the	8.0	Appropriate
nature of science understanding		
2. The curriculum rationale are appropriate for the context of Thai	1	Appropriate
science education.		
Curriculum goal		
1. The curriculum goal is explicit on enhancing student	1	Appropriate
understanding of the nature of science		
2. The curriculum goal is explicit on enhancing student ability to	1	Appropriate
make decisions on science based dilemmas by concerning the		
nature of science		
3. The curriculum goal is appropriate for science education in	1	Appropriate
Thailand		
Content : Genetics		
The content is correct and clearly stated	8.0	Appropriate
Content : The nature of science		
The content is correct and unambiguous	1	Appropriate
2. The content support students to make decisions on science		
based dilemmas by concerning the nature of science	1	Appropriate
Integrated Content		
1. The integrated content is appropriately integrate genetics and the	8.0	Appropriate
nature of science content		
2. The integrated content promotes students to meaningfully	1	Appropriate
understand the development of scientific knowledge		
Standards and learning indicators		
Strand 1: Living things and living process		
1. The standards and learning indicators are unambiguous	1	Appropriate
The standards and learning indicators cover the curriculum goals	1	Appropriate
Strand 2 : The nature of science		
1. The standards and learning indicators are unambiguous	1	Appropriate

List of Evaluation	IOC	Meaning
2. The standards and learning indicators cover the curriculum goals	1	Appropriate
Additional nature of science learning indicators		
1. The additional nature of science learning indicators are	1	Appropriate
unambiguous		
2. The additional nature of science learning indicators cover the	1	Appropriate
curriculum goals		
Instructional units		
1. Time allocation and contents are appropriate	1	Appropriate
2. The instructional units cover intended learning outcomes and	1	Appropriate
curriculum goals		
Evaluation and assessment		
The evaluation and assessment are suitable for instructions	1	Appropriate
2. The evaluation and assessment reflect intended learning	8.0	Appropriate
outcomes		
The evaluation and assessment are practicable	1	Appropriate
Overall curriculum		
1. The curriculum is up to date	0.8	Appropriate
The curriculum is suitable for Thai context	1	Appropriate
3. The curriculum is effective for teaching the nature of science	0.6	Appropriate
without creating additional alternative science courses		
4. The curriculum document is comprehensible	1	Appropriate
5. The curriculum is possible to apply in practice	1	Appropriate
6. The curriculum design accommodate the integration of science	1	Appropriate
content and the nature of science		

CONGRUENCE OF THE DRAFT CURRICULUM

	List of Evaluation	IOC	Meaning					
The Curriculum congruence								
1.	The curriculum rationale is congruence with the curriculum goal	1	Congruence					
2.	The curriculum rationale is congruence with the content	1	Congruence					
3.	The curriculum rationale is congruence with the learning standards	1	Congruence					
4.	The curriculum goal is congruence with the content	1	Congruence					
5.	The curriculum goal is congruence with the learning standards	1	Congruence					
6.	The curriculum goal is congruence with the intended learning outcomes	1	Congruence					
7.	The curriculum goal is congruence with learning units	1	Congruence					
8.	The curriculum goal is congruence of the evaluation and assessment process	1	Congruence					
9.	The learning standards are congruence with the intended learning outcomes	1	Congruence					
10.	The learning units are consistent with the intended learning outcomes	1	Congruence					
11.	The learning units are congruence with instructional activities	1	Congruence					
12.	The instructional activities are congruence with the evaluation and assessment	1	Congruence					
13.	The evaluation and assessments are congruence with the	8.0	Congruence					
	intended learning outcomes							

APPENDIX E

ตัวอย่างภาพการจัดกิจกรรมการเรียนรู้

.....

ภาพกิจกรรมการเรียนรู้

นักเรียนแสดงความกระตือรือรันในการ ตอบคำถามระหว่างเรียน

หักเรียนทำกิจกรรมลูกบาศก์ปริศนา (Mysterious Cubic)

นักเรียนนำเสนอผลงานหน้าชั้นเรียน

นักเรียนทำกิจกรรมโต้วาทีเกี่ยวกับ พันธุวิศวกรรมและข้อโต้แย้ง

หักเรียนนำเสนอผลงาน การออกแบบการทดลอง

นักเรียนจัดเตรียมนิทรรศการ ประวัติการค้นพบทางพันธุศาสตร์

VITAE

Name: Miss Parinda Limpanont

Data of Birth: February 10, 1981

Place of Birth: Bangkok, Thailand

Address: 100/318 Amorphan 9, Latphrao-Wanghin 74, Ladphrao, Bangkok,

Thailand, 10230

Email: parinda_limpanont@hotmail.com

Educational Background

2011 Doctor of Edcation (Ed.D.), Science Education, Srinakharinwirot University,

Bangkok

2005 Master of Education (M.Ed), Science Education, Chulalongkorn University,

Bangkok.

2002 Bachelor of Education, (B.Ed), General Science - Chemistry Teaching,

Chulalongkorn University.