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A Hamiltonian walk in a connected graph G of order n is a closed spanning
walk of minimum length in G. The Hamiltonian number h(G) of a connected graph
G is the length of a Hamiltonian walk in G. Thus h may be considered as a measure
of how far a given graph is from being Hamiltonian. It is well known that the prob-
lem of determining whether a given graph is Hamiltonian or not is NP-complete

Let J be a class of graphs. We consider the problem of determining the

range of Hamiltonian numbers
MT)=A{h(G):Ge T}

We completely solve the problem when J = CR(3") where CR(3") is the class of
all connected cubic graphs of order n and J = G(n; k = k) where G(n; k = k) is the
class of all graphs of order n with connectivity k. Open problems in this direction

are also provided for future work.
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CHAPTER 1

INTRODUCTION

1.1 Prologue

In the mathematical field of graph theory, a Hamiltonian path of graph is
a path in a simple graph which contains every vertex of graph exactly once. A
Hamiltonian cycle (or Hamiltonian circuit) of graph is a cycle which contains every

vertex of graph exactly once and also returns to the starting vertex.

Hamiltonian paths and cycles are named after William Rowan Hamilton who
invented the Icosian Game, now also known as Hamilton’s puzzle, which involves
finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved
this problem using the Icosian Calculus, an algebraic structure based on roots of
unity with many similarities to the quaternions (also invented by Hamilton). Un-

fortunately, this solution does not generalize to arbitrary graphs.

In general, the problem of determining whether such paths and cycles exist
in graphs is the Hamiltonian path problem which is NP-complete [11]. The only
known way to determine whether a given general graph has a Hamiltonian path or
Hamiltonian cycle is to undertake an exhaustive search. Rubin [17] in 1974 describes
an efficient search procedure that can find some or all Hamilton paths and circuits

in a graph using deductions that greatly reduce backtracking and guesswork.

Questions relating to paths and cycles in graphs and digraphs have been
extensively studied a variety of perspectives. One of the most popular questions
in undirected graphs relates to determining the class of graphs which contain a
Hamiltonian path or cycle. This basic question has been generalized and specialized
in many ways which have led to obtain a number of deep and interesting results (for

survey of such results, see [13]).

Our particular interest is to study the Hamiltonian number in some classes

of connected graphs. The concept of Hamiltonian number of a connected graph was



introduced by Goodman and Hedetniemi [12] in 1973. The Hamiltonian number of
a connected graph G, denoted by h(G), is the minimum length among all closed
spanning walks in GG. Therefore, if G is a graph of order n, then GG is Hamiltonian
if and only if A(G) = n. In general, if G is a connected graph of order n and not
Hamiltonian, then a Hamiltonian walk might pass through some vertices and tra-
verse some edges, more than once. In this case h(G) > n + 1. Thus the function
h may be considered as a measure of how far a given graph is from being Hamil-
tonian. An upper bound for h(G) of a connected graph G of order n was obtained
also in [12], that is h(G) < 2n — 2 and h(G) = 2n — 2 if and only if G is a tree.
Moreover, it was proved that for a given integer p where n < p < 2n — 2, there
exists a connected graph G, of order n and h(G),) = p. This leads to the problem of
determining of h(J) seems to be more interesting for several classes of graphs, e.g.,
the class of connected r-regular graphs of order n, the class of connected graphs of
order n and size m, the class of connected graphs of order n and diameter d, the
class of connected graphs of order n, and connectivity k, etc. More precisely, let
CG(n) be the class of connected graphs of order n and J C CG(n). By putting
hMT) :=A{h(G) : G € J}, we call it the range of Hamiltonian numbers in J. Ev-
idently, if n > 3, then h(CG(n)) = {zr € Z : n < z < 2n — 2}. Since a connected
2-regular graph of order n is Hamiltonian, it is reasonable to obtain h(CR(3"™)),
where CR(3") is the class of connected cubic graphs of order n. In this disserta-

tion, we focus on the determination of h(CR(3")) and some other related subclasses.

1.2 Background

We present, in this section, the basic notation and terminology. For most
part, our graph theoretic notation and terminology can be found in the textbooks
of Chartrand and Lesniak [5] and Chartrand and Zhang [6]. In particular, a graph
G consists of a set of vertices V(G), a set of edges E(G), and an incidence relation
which associates with each edge of G an unordered pair of (not necessarily distinct)
vertices of GG called its ends. If e is an edge of G with ends u and v, then e is said to
join u and v. An edge with identical ends is called a loop. We can represent a graph

by a diagram in which the vertices are points and edges are line segments. Thus, in



general, there is no unique way of drawing a graph. Two vertices which are joined
by an edge are said to be adjacent. If more than one edge joins the same pair of
vertices, we say the graph has multiple edges. A graph is simple if it has no loops

or multiple edges. We limit our discussion to graphs that are simple and finite.

Since we deal only with finite graphs, we set up the following notation and ter-
minology for a typical graph G. For a graph G, we may write V(G) = {vy, v, ...,v,}
and E(G) = {e1,ea,...,en}. Denoting by |S| the cardinality of a set S we define
n(G) = |V(G)| the order of G,or simply n, and m(G) = |E(G)| the size of G or
simply m. If an edge e corresponds to the vertex pair {u,v}, to simplify writing,
we will write e = uv and we say that the edge e joins the vertices u and v. For
each v € V(G), a vertex u € V(G) is called a neighbor of v if vu € E(G). The
neighborhood of v € V(G) in G, denoted by N¢(v), is defined by

Ng(v) ={z € V(G) : zv € E(G)}.
If S CV, we denote Ng(S) = U,cg Na(v) and Ng(v) = Ng(v) N S.

The idea of sameness or identical of graphs is formalized by the following

definition.

Two graphs G and H are equal if V(G) = V(H) and E(G) = E(H). Two
graphs G and G5 are isomorphic if there exists a one-to-one correspondence ¢ from
V(G1) to V(Gy) such that uyvy € E(Gy) if and only if ¢(u1)p(vi) € E(G2). In this
case, ¢ is called an isomorphism from G; to GG5. Thus, if G; and G5 are isomorphic
graphs, then we say that G is isomorphic to Gy and we write G; = G,. If two

graphs GG and H are not isomorphic, then they are called nonisomorphic graphs and

we write G 2 H.
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It is clear that the relation “ = 7 is an equivalence relation on the set of
all simple graphs. Consequently, it partitions the set of all graphs into equivalence
classes each of which consists of all graphs having the same algebraic properties. The

meaning of what we call algebraic property can be defined in the following definition.

Let G be the class of simple graphs and let X be any set. A function f :
G — X is called an invariant if G = H then f(G) = f(H). When X = Z, a graph



invariant is called a graph parameter.

A graph H is called a subgraph of a graph G, written H C G, if V(H) C V(G)
and E(H) C E(G). We also say that G contains H as a subgraph. If H C G and
either V(H) is a proper subset of V(G) or E(G) is a proper subset of F(G), then H
is a proper subgraph of G. If a subgraph of a graph G has the same vertex set as
G, then it is a spanning subgraph of G.

A subgraph F' of a graph G is called an induced subgraph of G if whenever
u and v are vertices of F' and wv is an edge of G, then uv is an edge of F' as well.
If S is a nonempty set of vertices of a graph G, then the subgraph of G' induced by
S is the induced subgraph with vertex set S. This induced subgraph is denoted by
(S). To emphasize that this is an induced subgraph of GG, we sometimes denote this

subgraph by (S). or by G[95].

Any proper subgraph of a graph G can be obtained by removing vertices and
edges from G. For an edge e of G, we write G — e for the spanning subgraph of G
whose edge set consists of all edges of G except e. More generally, if X is a set of
edges of G, then G — X is the spanning subgraph of G with F(G — X) = E(G) — X.

If X ={ey,eq,...,ex}, then we also write G — X as G —e; — ey — -+ - — ¢y

For a vertex v of a nontrivial graph G, the subgraph G — v consists of all
vertices of GG except v and all edges of G except those incident with v. For a proper
subset U of V(G), the subgraph G — U has vertex set V(G) — U and its edge set
consists of all edges of G joining two vertices in V(G) — U. Necessarily, G — U is an

induced subgraph of G; indeed, G — U = (V(G) — U).

If v and v are nonadjacent vertices of a graph G, then e = uv ¢ E(G). By
G + e, we mean the graph with vertex set V(G) and edge set F(G) U {e}. Thus G

is a spanning subgraph of G + e.

A graph G is complete if every two distinct vertices of G are adjacent. A
complete graph of order n is denoted by K,. Therefore, K, has the maximum
possible size for a graph with n veertices. Since every two distinct vertices of K,

are joined by an edge, the number of pairs of vertices in K, is (’;) and so the size of



K, is (g) = —”("2_1).

The complement G of a graph G is the graph whose vertex set is V(G) and
such that for each pair u, v of vertices of G, uv is an edge of G if and only if uv is
not an edge of G. Observe that if G is a graph of order n and size m, then G is a

graph of order n and size (") —m. The graph K, then has n vertices and no edges;

2
it is called the empty graph of order n. Therefore, empty graphs have empty edge

sets.

A graph G is a bipartite graph if V(G) can be partitioned into two subsets
U and W, called partite sets, such that every edge of G joins a vertex of U and a
vertex of W. We call G a complete bipartite graph if every vertex of U is adjacent to
every vertex of W. A complete bipartite graph with |U| = s and |W| = ¢ is denoted
by K, or K. If either s =1 or ¢t = 1, then K, is star.

Let G; and G5 be two disjoint graphs. The union G = G; U Gy has V(G) =
V(G1)UV(G,y) and E(G) = E(G1)UE(G,). If a graph G consists of k(> 2) disjoint
copies of a graph H, then we write G = kH. Let G and H be any two graphs, not
necessarily disjoint. The join G+ H consists of GU H and all edges joining a vertex
of G and a vertex of H.

For two (not necessarily vertex-disjoint) graphs G and H, the Cartesian
product G x H has vertex set V(G x H) = V(G) x V(H), that is, every vertex of
G x H is an ordered pair (u,v), where v € V(G) and v € V(H). Two distinct
vertices (u,v) and (z,y) are adjacent in G x H if either (1)u = z and vy € E(H) or
(2)v = y and uz € E(G). Notice that Ky x K5 is the 4-cycle. The graph Cy x Kj is
often denoted by ()3 and is called the 3-cube. More generally, we define ()1 to be K,
and for n > 2, define @), to be @,,_1 x K5. The graphs @),, are then called n-cubes

or hypercubes.

We now define a number of concept arising from the adjacency and incidence

relations in a graph, leading to the concept of a connected graph.

A u—v walk W in G is a sequence of vertices in GG, beginning with u and

ending at v such that consecutive vertices in the sequence are adjacent, that is, we



can express W as

W iu = vy, v, ..., U = 0,

where k£ > 0 and v; and v;,; are adjacent for ¢ = 0,1,2,....,k — 1. Each vertex
v;(0 < i < k) and each edge v;v;,1(0 < i < k — 1) is said to lie on or belong to W.
If w = v then the walk W is closed; while if u # v, then W is open. The number of
edges encountered in a walk(including multiple occurrences of an edge) is called the

length of the walk.

A u — v trail in a graph G to be a u — v walk in which no edge is traversed
more than once. A u — v walk in a graph in which no vertices are repeated is a
u — v path. A circuit in a graph G is a closed trail of length 3 or more. A circuit
that repeats no vertex, except for the first and last, is a cycle. A path of order n is
called an n-path and is denoted by P,. A cycle of order n is called an n-cycle and

is denoted by C,.

If G contains a u — v path, then u and v are said to be connected and wu is
connected to v (and v is connected to u). By convention, a vertex is connected to
itself. A graph G is connected if every two vertices of G are connected, that is, if
G contains a u — v path for every pair u,v of distinct vertices of G. A graph G
that is not connected is called disconnected. A connected subgraph of G that is not
a proper subgraph of any other connected subgraph of G is a component of G. A
graph G is then connected if and only if it has exactly one component. An edge

e = uv of a connected graph G is called a bridge of G if G — e is disconnected.

A graph G is called acyclic if it has no cycles. A tree is an acyclic connected
graph. A spanning subgraph H of a connected graph G such that H is a tree is

called a spanning tree of G.

Let G be a connected graph of order n, and let v and v be two vertices of
G. The distance between u and v is the smallest length of any v — v path in G
and is denoted by dg(u,v) or simply d(u,v). The greatest distance between any
two vertices of a connected graph G is called the diameter of G and is denoted by

diam(G).



The degree of a vertex v of a graph G is the number of edges of G which are

incident with v. In symbol
deg(v) = |{e € E:e=wuv for some u € V}|.

The minimum degree and the mazimum degree of a graph G are usually denoted by
the special symbols §(G) and A(G) respectively. So if G is a graph of order n and
V' is any vertex of GG, then

0 <0(G) <deg (v) <A(G) <n-—1.

A simple graph is said to be r-regular if all of its vertices have degree r. A
3-regular graph is usually called a cubic graph. A vertex with degree zero is called
an isolated vertex. An r-regular spanning subgraph of a simple graph G is called an

r-factor of G.

A vertex of odd degree is called an odd vertex and a vertex of even degree
is called an even vertex. The following theorem is known as The First Theorem of

Graph Theory.

Theorem 1.2.1 If G is a graph of size m, then

Z deg(v) = 2m.

veV(G)

Corollary 1.2.2 FEwvery graph has an even number of odd vertices. U

A vertex v in a connected graph G is a cut-vertex of G if G—wv is disconnected.
A nontrival connected graph with no cut-vertices is called a nonseparable graph. A
nonseparable subgraph of a graph G that is not a proper subgraph of any other
nonseparable subgraph in G is called a block. Each block of GG is an induced subgraph
of G.

A wertex-cut in a graph G is a set U of vertices of G such that G — U is

disconnected. For a graph G that is not complete, the vertex-connectivity (or simply



the connectivity) k(G) of G is defined as the cardinality of a minimum vertex-cut of
G; if G = K, for some positive integer n, then x(G) is defined to be n—1. Therefore,
for every graph G of order n,

0<k(G)<n-1.

For a nonnegative integer k, a graph G is said to be k-connected if kK(G) > k.

Therefore, a k-connected graph is also [-connected for every integer [ with 0 <[ < k.

A set of vertices in a graph is independent if no two vertices in the set are
adjacent. The vertex independence number (or the independence number) 3(G) of a

graph G is the maximum cardinality of an independent set of vertices in G.
1.3 Hamiltonian Graphs and Numbers

A cycle in a graph G that contains every vertex of G is called a Hamiltonian
cycle of G. A Hamiltonian graph is a graph that contains a Hamiltonian cycle.
Certainly the graph C,, (n > 3) is Hamiltonian. Also, for n > 3, the complete graph
K, is a Hamiltonian graph. A path in a graph G that contains every vertex of G
is called a Hamiltonian path in G. If a graph contains a Hamiltonian cycle, then
it contains a Hamiltonian path. The graph G = K33 of Figure 1 is a Hamiltonian

graph.

Figure 1 The Hamiltonian graph Kj 3.



The graph G of Figure 2 is not a Hamiltonian graph.

Figure 2 A non-Hamiltonian graph.

One of the most famous non-Hamiltonian graphs is the Petersen graph

(shown in Figure 3). The Petersen graph is a cubic graph of order 10.

Figure 3 The Petersen graph.

The following result of Dirac [10] gives a sufficient condition graph to be

Hamiltonian.

Theorem 1.3.1 If G is a simple graph of order n > 3 and 0(G) > %, then G is

Hamiltonian. O

The concept of a Hamiltonian walk was introduced by Goodman and Hedet-
niemi [12] in 1973. A Hamiltonian walk in a connected graph G is a closed spanning
walk of minimum length in G. The Hamiltonian number of a connected graph G, de-
noted by h(G), is the length of a Hamiltonian walk in G. Therefore, for a connected
graph G of order n > 3, it follows that A(G) = n if and only if G is Hamiltonian.
So, if G is non-Hamiltonian graph, then h(G) > n 4+ 1. The Petersen graph is a
non-Hamiltonian graph of order 10 with A(G) = 11.



CHAPTER 2

REVIEW OF THE LITERATURE

The purpose of this chapter is to review some relevant works on the Hamil-
tonian number of graphs or of the classes of graphs which have been obtained in
the past 30 years. We have already mentioned in Section 1.1 that the concept
of the Hamiltonian number was introduced by Goodman and Hedetniemi [12] in
1973. Hamiltonian walks were studied further by Asano, Nishizeki, and Watanabe
[2, 3], Bermond [4], and Vacek [21], Chartrand, Thomas, Zhang and Saenpholphat
[7, 8, 20].

2.1 Basic Results on h(G)

Let us begin with the results of Goodman and Hedetniemi in [12] concerning
the Hamiltonian number of graphs related to other graph parameters. Although the
results presented in this section are simple and basic but they are useful and will be

applied throughout our work.

The first result dealt with a relationship between the Hamiltonian number of
graph and the Hamiltonian number of its certain subgraphs as stated in the following

theorem.

Theorem 2.1.1 Let G be a connected graph having blocks By, Bs, ..., Bx. Then

Theorem 2.1.1 has several implications, namely:

1. Every bridge of a graph GG appears twice in every Hamiltonian walk of G.

2. If G is a tree of order n, then h(G) = 2(n — 1).
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3. Let G be a connected graph having blocks By, Bs, ..., Bg. If a; < h(B;) < b;
foralli=1,2,...,k then a; +as+ ... +ar < h(G) < by +by+ ...+ bg.

The next result gives a complete description for the Hamiltonian number of

a complete n-partite graph as stated in the following theorem.

Theorem 2.1.2 Let G = K, n,..n, be a complete k-partite graph on ny + ng +

.....

...+ n, = n vertices, where ny < ny < ...<mny,. Then
1. G is Hamiltonian if and only if ny +ngo + ... +ng_1 > ny.

2. [fn1+n2+...+nk_1<nk, then h(G):2nk O

It is usually difficult to obtain a good upper bound of h(G). The follow-
ing result provides an upper bound of h(G) in terms of other easily computable

parameters of a graph.

Theorem 2.1.3 If G is a k-connected graph of order n having diameter d, then
k
h(G) < 2n — liJ (2d —2) — 2.

O

Determining a good lower bound for h(G) tends to be more difficult than
upper bounds. We first state a definition of unicliqual as a vertex of a graph that

lies in only one clique.

Theorem 2.1.4 Let U be the set of unicliqual vertices in G. Then

WG —U) +|U| < h(G).

In 1976, Bermond [4] obtained the following result.

Theorem 2.1.5 Let G be a connected graph of order n > 3 and let k be an integer
with 0 < k <n—2. Ifdeg(u)+deg(v) > n—k every pair u,v of nonadjacent vertices
of G, then h(G) <n+k. O
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2.2 A New Look at Hamiltonian Walks

Chartrand et. al [8] provided an alternative way to define h(G) of a Hamilto-
nian walk in G. A Hamiltonian graph G contains a spanning cycle C' : vy, vo, - - -, vy,
Unt+1 = U1, where then v;v41 € E(G) for 1 <i < n. Thus Hamiltonian graphs of or-
der n > 3 are those graphs for which there is a cyclic ordering vy, vo, - -+, Uy, Upti1 = ¥y
of V(G) such that Y1 | d(v;,v+1) = n, where d(v;, v;41) is the distance between v;
and v; 1 for 1 <7 < n. For a connected graph G of order n > 3 and a cyclic ordering

SV, Vg, U, Upa1 = v1 of V(G), the number d(s) is defined as

d(s) = Z d(vi, Vi)

Therefore, d(s) > n for each cyclic ordering s of V(G). With this observation, it was
shown in [8] that the Hamiltonian number ~(G) = min{d(s)}, where the minimum

is taken over all cyclic orderings s of V(G).

By the result of Theorem 2.1.1, if T is a tree of order n, then h(T) = 2n — 2.

The following theorem shows that the converse of this statement is also true.

Theorem 2.2.1 Let G be a connected graph of order n. Then
h(G) = 2n — 2 if and only if G is tree.

U

The following result shows that every pair n, k of integers with 3 < n <
k < 2n — 2 is realizable as the Hamiltonian number as well as the order of some

connected graph.

Proposition 2.2.2  For every pair n, k of integers with 3 <n < k < 2n — 2, there

exists a connected graph G of order n having h(G) = k. 4

In [8] the authors exploited the concept of a cyclic ordering of V(G) of a
connected graph G to define the upper Hamiltonian number, denoted by h*(G), as

h*(G) = max {d(s)},
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where the maximum is taken over all cyclic orderings s of V(G).
The exact values of b (G) were obtained in many classes of graphs as stated

in the following theorems.

Theorem 2.2.3 Let (), be the hypercube of dimension n > 2. Then
hH(Q,) = 2" (2n — 1).
O

Note that h(G) < h*(G) for every connected graph G. It was also shown in
[8] that there are exactly two classes of connected graphs of order n for which their

Hamiltonian number and upper Hamiltonian number are the same.

Theorem 2.2.4 Let G be a connected graph of order n. Then

h(G) = h™(G) if and only if G =K, or G = Ky,_;.

O

Bounds for the upper Hamiltonian number in the class of trees and in the
class of cycles were also discussed.
The Hamiltonian number and the upper Hamiltonian number of connected

graphs were further discussed also in [7].

2.3 Graphs of Order n with Hamiltonian Number 2n — 3 or 2n — 4

It is well known that for a graph G of order n, h(G) = 2n — 2 if and only if
G is a tree. Saenpholphat and Zhang in [20] took a step further by characterizing
all connected graph of order n with Hamiltonian number 2n — 3 or 2n — 4.

A connected graph with exactly one cycle is called a unicyclic graph. Let Ur

be the set of all unicyclic graphs containing exactly one triangle.

Theorem 2.3.1 Let G be a connected graph of order n > 3. Then

hG) = 2n — 3 if and only if G € Ur.



14

The following theorems shows a characterization of 2-connected graphs of

order n > 4 with Hamiltonian number 2n — 4.

Theorem 2.3.2 Let G be a connected graph of order n > 4. Then
hG) =2n—4 if and only if G € {Ky, Koo, Ko+ K, o} .

O
Let G; be the set of connected graphs G of order n > 5 with cut-vertices such
that G contains exactly two blocks that are K3 and each of the remaining blocks of

G is K5. Let Gy be the set of connected graphs G of order n > 5 with cut-vertices

such that GG contains exactly one block that is one of graphs in the set
S = {K4} U {Kgm_g,Kg +F7‘_2 4 S r S n — 1}
and each of the remaining blocks of G is K.

Theorem 2.3.3 Let G be a connected graph of order n > 5 with cut-vertices. Then
h(G) =2n — 4 if and only if G € G U G.

O

It has shown that the two upper bounds for the Hamiltonian number of a
connected graph can be in terms of (1) its order and clique number and (2) its order

and connectivity.

The clique number w(G) of a graph G is the maximum order among the
complete subgraphs of G. The following result shows an upper bound for A(G) in

terms of the order and clique number of a connected graph G.

Proposition 2.3.4 If G is a nontrivial connected graph of order n having clique
number w, then

h(G) < 2n — w.

Furthermore, for each integer w with 2 < w < n, there exists a connected graph F

of order n having clique number w such that h(F) = 2n — w. U
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Let x(G) be the connectivity of a graph G. It is known that x(G) < §(G)
for every graph G. A graph G is k-connected if k(G) > k.

Proposition 2.3.4 Let G be a nontrivial k-connected graph of order n and diam-

eter d > 3. If G is not Hamiltonian, then h(G) < 2(n — k). O

Observe that if G is a non-Hamiltonian k-connected graph of order n and

diameter 2, then h(G) < 2n — k — 1. The authors posted the following conjecture.

Conjecture 2.3.6 Let G be a k-connected graph of order n and diameter 2. If G
is not Hamiltonian, then h(G) < 2n — 2k. O



CHAPTER 3

INTERPOLATION AND EXTREMAL THEOREMS:
THE HAMILTONIAN NUMBER OF CUBIC GRAPHS

This chapter is to present our comprehensive work concerning interpolation
and extremal results for the graph parameter h. It consists of 4 sections. Section 3.1
deals with our first results concerning the Hamiltonian number of the generalized
Petersen graphs and some other related classes of cubic graphs. We introduce the
concept of an -Hamiltonian graph as a connected graph G of order n having h(G) =
n + 4. In section 3.1, we characterize all connected graphs G of order n where
h(G) = n+1. We continue our investigation for the Hamiltonian number in the class
of connected cubic graphs of order n in Section 3.2. We have successfully determined
the range of Hamiltonian numbers in the class of connected cubic graphs, CR(3"). It
should be noted that for even integers n # 14, we have that the range of Hamiltonian
numbers in the class of connected cubic graphs h(3™) completely covers all integers
from n to max(h,3") = max{h(G) : G € CR(3™)}. We found that cubic graphs G of
order n with h(G) = max(h,3") are those graphs which contain as many cut edges
as possible. With these observation we consider the problem of determining the
range of Hamiltonian numbers in the class of 2-connected cubic graphs of order n.
This problem was also motivated by a result of Robinson and Wormald [16]. They
proved by using a probabilistic method that if H is the number of Hamiltonian
cycles in a cubic graph chosen uniformly at random from all labelled cubic graphs
on 2n vertices, then

lim Pr(H >0)=1.

We produce some classes of cubic graphs of order 2n which are far from being
Hamiltonian. Details can be found in Section 3.3. It is not difficult to believe that a
connected graph GG with small circumference may have a large Hamiltonian number.
On the other hand, a connected graph having a higher connectivity may have a small
Hamiltonian number. It was proved by Chavatal and Erdés [9] that a graph G with

at least three vertices and x(G) > [(G) is Hamiltonian. This result suggests us to
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consider the problem of determining the range of Hamiltonian numbers in the class
of graphs G of order n and k(G) = k. Both interpolation and extremal results are
obtained in all situations. Furthermore, we are able to use our result to prove a con-

jecture posted by Saenpholphat and Zhang [20]. Details can be found in Section 3.4.

3.1 Almost Hamiltonian Cubic Graphs

A connected graph G of order n is called an i-Hamiltonian graph if h(G) =
n+14. Thus a 0-Hamiltonian graph is Hamiltonian. A 1-Hamiltonian graph is called

an almost Hamiltonian graph.

Let P(k,m) be a generalized Petersen graph such that V(P (k,m)) = {u;, v; :
i=0,1,---,k—1} and E(P(k,m)) = {utit1, VVism,u;v; 12 =0,1,--- k—1} where
addition is taken modulo £ and m < % The graph P(5,2) is the Petersen graph.
In [1] Alspach completely determined all integers k and m in which P(k,m) is

Hamiltonian as we will state in the following theorem.

Theorem 3.1.1 The generalized Petersen graph P(k,m) is non-Hamiltonian if
and only if m = 2 and k = 5(mod 6). O

Since P(k,m) is a graph of order 2k, it follows that hA(P(6t —1,2)) > 2(6t —
1) +1 =12t — 1 for all integers t > 1. Next theorem we show that P(k,m) is an

almost Hamiltonian graph if and only if m = 2 and k& = 5(mod 6).

Theorem 3.1.2 Let P(k,m) be a generalized Petersen graph. Then

2k+1 +f m=2 and k = 5(mod 6),
(P (h, m)) = ! o)

2k otherwise.

Proof. By Theorem 3.1.1, it is enough to produce a closed spanning walk of
P(k,m) of length 2k + 1 for m = 2 and k = 5(mod 6). Define W be defined as

follows
W vg,v9, -+, Up—1,01,03, "+ -, Up—2, Uk—2, Uk—3, Ug—d, - = * , UL, Ug, Uk—1, Up, Vp-

It is clear that W has length 2k + 1. Thus h((P(k,m)) = 2k + 1. O
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It was shown in [19] that all connected cubic graphs of order n, where 4 < n <
8, are Hamiltonian. It was also shown in [19] that the Petersen graph P(5,2) and the
Tietze graph (denoted by T}2) are the only 2-connected cubic graph of order 10 and
12, respectively, that are not Hamiltonian. They are, in fact, almost Hamiltonian
cubic graphs of respective order. Note that T}5 is obtained from P(5,2) by replacing
one vertex of P(5,2) with a triangle and joining the vertices of the triangle to its

former neighbors of the replaced vertex (see Figure 4).

% &

Figure 4 The Tietze Graph Ts.

Let G be a cubic graph and v € V(G). We denote G * v to be the graph
obtained from G by replacing v by a triangle and joining the vertices of the triangle
to the former neighbors of v as shown in Figure 5. Thus G x v is also a cubic graph

containing a triangle.

G Gxv

Figure 5 Part of graph G and G x* v.

Theorem 3.1.3 Let G be a cubic graph of order n > 4 and v € V(G). Then G is

Hamiltonian if and only if G x v is Hamultonian.
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Proof. Let G be a cubic graph and V(G) = {vy,va,---,v,}. Put v = vy;. Thus
G v is the graph with V(G xv) = (V(G) —v) U{x1, 11, 21}, {1,91, 21} induced a
triangle in G x v and Y109, v,21 € E(G *v).

Suppose that G is Hamiltonian. Without loss of generality we may assume
that

0:7117/027”'7UH7'U1

is a Hamiltonian cycle of G. Thus
CU P21, %1, Y1,V2,U3,° -, U, 21

is a Hamiltonian cycle of G * v.

Conversely, suppose that G * v is Hamiltonian and let
C’U U, Uyttt Up42, U

be a Hamiltonian cycle of G * v. If x; is not a neighbor of y; and z; in C,, then
dgsv(z1) > 4. Thus x; is a neighbor of y; or z; in C,. It is also true for y; and z;.
Thus x4, y1, 21 must appear as consecutive vertices in C,,. Deleting the three vertices

and replacing them by v, we obtain a Hamiltonian cycle of G. U

Let G be a cubic graph of order n with V(G) = {vy,vq," -+, v,}. Put G' =
G *v; and put G = G¥ % v, for an integer i, 1 < i < n — 1. Thus from Theorem

3.1.3 we have the following corollary.

Corollary 3.1.4 Let G be a cubic graph of order n. Then G is Hamiltonian if and

only if G* is Hamiltonian for all 1 <1i < n. 0

By Theorem 3.1.3, we also have that if G is not Hamiltonian cubic graph,

then G * v is not Hamiltonian.

The subdivision graph of a graph G is a graph obtained from G by deleting
an edge uv of G and replacing it by a vertex w of degree 2 that is joined to u and
v. Let K be a subdivision of K, obtained by inserting a vertex of degree 2 into an

edge of K, (see Figure 6).
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Figure 6 Graph K.

Let G be a graph obtained from three copies of K and a new vertex v by
connecting three vertices of degree two of K to v (see Figure 7). Thus G is a cubic
of order 16 with h(G) = 21 but A(G % v) = 24. It is clear that G is a 5-Hamiltonian
and G * v is 6-Hamiltonian. Note that G % w is 5-Hamiltonian, for each vertex w of

G which is not v.

G*wv

Figure 7 Graphs G and G % v.

Theorem 3.1.5 For an even integer n > 10, there exists an almost Hamiltonian

cubic graph of order n.

Proof. The Petersen graph P(5,2) is the unique almost Hamiltonian cubic graph
of order 10 and the Tietze graph T}, is also the unique almost Hamiltonian cubic
graph of order 12 and 715 = G % v, where G = P(5,2) and v € V(P(5,2). Let

uy,v1,w; be the induced triangle of 115 and Ty = Tio * v1 (see Figure 8). Thus
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for an integer 7 > 1, let u;, vy, w; be the induced triangle of T1o1 (1) and Tiai9; =
Tio42(i—1) * v;. By assuming that the graph Tis (1) is almost Hamiltonian, we
have that h(Ti242;) < 12+ 2i + 1. By Theorem 3.1.3 we have that Tijs,9; is not
Hamiltonian. Therefore h(Tia19;) = 12+ 2i + 1 and Tia49; is almost Hamiltonian.

4

Figure 8 Graph T,.

A Hamiltonian graph is necessarily 2-connected. The same result also holds
in the class of almost Hamiltonian cubic graphs. The following Theorem 3.1.7 can
be considered as a characterization of cubic graphs for being almost Hamiltonian

graph, but first we show that an almost Hamiltonian cubic graph is also 2-connected.

Theorem 3.1.6 Let G be a connected cubic graph of order n > 10. If G is almost

Hamiltonian, then G is 2-connected.

Proof. Suppose that GG is not 2-connected and v is a cut vertex of G. Since G is
cubic, there exists a vertex u such that w is also a cut vertex of G and u is adjacent
to v. Furthermore, uv is a cut edge of G. Let G — e = G; U G5. It follows that
h(G) > h(G1) + h(G2) + 2 > n + 2. The proof is complete. O

Theorem 3.1.7 Let G be a connected non-Hamiltonian cubic graph of order n >
10. Then G 1is an almost Hamiltonian graph if and only if for every Hamiltonian

walk W of G, W contains a cycle of order n — 1.

Proof. Suppose that h(G) = n+ 1. Let vy,vs, -+, 0,49 = v; be a Hamiltonian

walk of length n 4 1. Thus there exist v; and v; with 1 <7 < j <n and v; = v; and
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all other vertices are distinct. Without loss of generality we may assume that ¢ = 1.
If j > 4, then d(v;) > 4. Thus for j = 3, v3,v4, -+, Ups2 = v3 is a cycle in G of
length n — 1. Conversely, suppose G contains a cycle vy, vq, - -+, v,_1 = v; of length
n—1. Let v € V(G) — {v1 = vy_1, 02,03, -+, v,_1}. Thus there exists an integer k
with 1 < k£ < n — 1 such that v, is adjacent to v,. We now form a Hamiltonian
walk vy, vg, -+, Uk, U, Uk, -+, v,_1 = v and this walk has length n 4+ 1. Therefore

hG) =n+1. 0

Let G be a Hamiltonian cubic graph. We have shown in Theorem 3.1.3 that
for every v € V(G), G*v is Hamiltonian and vise versa. We have also mentioned that
there is a 5-Hamiltonian graph G and v € V(G) such that G * v is 6-Hamiltonian.

Let G be a connected cubic graph of order n with V/(G) = {v1,vq, -+, v,}.
Denote that G* = G™. Figure 9 shows the graph P*(5,2).

Figure 9 Graph P*(5,2).

Theorem 3.1.8 If G is an almost Hamiltonian cubic graph of order n, then

h(G*) = 3n + 2.

Proof. By Theorem 3.1.3, it follows that h(G*) > 3n + 1. Assume, to the con-
trary, that h(G*) = 3n + 1. By Theorem 3.1.7, let C' : xy, 29, -+, Z3,-1,21 be a
cycle of length 3n — 1 of G*, where V(G*) = {x1, 29, -+, 23,}. Without loss of
generality we may assume that z3, is adjacent to x;. Since G* is non-Hamiltonian,
T3nT2, T3nTsn—1 € E(G*). Since G* is cubic, there exist 4,7 with 1 <i < j <3n—1
such {xs,,x;,;} induced a triangle in G* and also j = ¢ + 1. Therefore G* is

Hamiltonian. This is a contradiction.
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In order to show that h(G*) = 3n + 2, we will construct a Hamiltonian walk

of G* of length 3n + 2. As in the proof of Theorem 3.1.7, let

W:Ulav%“'avkvvavkv“'avn:7}1

Figure 10 A Part of Graph G*.

be a Hamiltonian walk of GG. For each i, 1 < ¢ < n, we replace vertices v; and v
in W by triangles x;, y;, 2; and x,y, z respectively, and then arrange them in such a
way that z; is adjacent to y; 41, for alle =1,2,--- ,n — 1. Without loss of generality
we may assume that z; is adjacent to x and vertices xy, yi, 2 are arranged as shown
in Figure 10. Thus the Hamiltonian walk

Wt 21,1, Y2, 20, T2,y Yh—1, Zh—1 Th—1, Yk Zhs Ty Yy 2, Ty 2oy Thy Ykt 15 Pkt 1, Thtl, "

Yn—1>Zn—1,Tn_1,Yn, 2n = 21 has length 3n + 2. O

The following result can be obtained as a direct consequence of Theorem

3.1.8.

Corollary 3.1.9 h(P*(k,2)) = 6k + 2, for every positive integer k with k =
5(mod 6). O

3.2 The Hamiltonian Number of Cubic Graphs

We have already seen several results concerning Hamiltonian numbers for
some specific classes of cubic graphs obtained in Section 3.1. Now we solve the

following as explained in the beginning of this chapter problem. We will see that
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several results concerning the structure of cycles in 2-connected cubic graphs will be
used throughout the proof.

Problem Let CR(3") be the class of connected cubic graphs of order n and
h(3") ={h(G) : G € CR(3")}.

Find h(3").

The following graph constructions and notation will be used in this section

from now on.

1. Let CR(3") be the set of all connected cubic graphs of order n. For n > 10,
let CR1(3™) be the class of connected cubic graphs of order n containing a cut

edge and CRy(3") the class of 2-connected cubic graphs.

2. Let G be a cubic graph and v € V(G). The cubic graph G * v has already

been defined earlier.

3. Let G be a cubic graph. We denote G a subdivision of G obtained by inserting
a vertex of degree 2 into an edge of G. Thus K is unique (see Figure 6). When
the inserted vertex in a subdivision of G is specified, say u, we denote G(u) a
graph with V(G(u)) = V(G) U {u} and E(G(u)) = (E(G) — xy) U {zu, uy},
where zy € E(G). For the graph K, of Figure 11, the graph K,(u) is shown.

X, - DX
) Y
K4 K4(u)

Figure 11 Graph Ky(u).

4. Let G and H be vertex disjoint cubic graphs. Let u,v be new vertices. We
denote (G(u), H(v)) a connected cubic graph of minimum order containing

G(u) U H(v) as its induced subgraph. Note that the graphs G(u) and H(v)
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are not unique but the graph (G(u), H(v)) is uniquely determined by G(u)
and H(v) and [(G(u), H(v))| = |G(u)| + |H(v)].

5. Let G, H and K be pairwise vertex disjoint cubic graphs. Let x,y,z be
new vertices. A connected cubic graph of minimum order containing G(x) U
H(y) U K(z) as its induced subgraph is denoted by (G(x), H(y), K(z)). Note
that the graph (G(x), H(y), K(z)) is uniquely determined by G(z), H(y) and
K(z). Then [(G(z),H(y), K(2))| = |G(z)| + |H(y)| + |K(2)| + 1. More gen-
erally, if Gy, G, ..., G} are pairwise disjoint graphs and for all i = 1,2.... k,
vertices of GG; are of degree 2 or 3 with at least one vertex of degree 2, then
(G1,Ga, . .., Gy) denotes a connected cubic graph of minimum order containing

G UGy U. .. UGy as its subgraph.

6. We denote K, the graph obtained from K, by removing an edge.

3.2.1 Cycles in 2-Connected Cubic Graphs

A factor of a graph G is a spanning subgraph of G. A k-factor of a graph
G is a k-regular spanning subgraph of GG. In particular, a 1-factor of a graph G is
a 1-regular spanning subgraph of G and a 2-factor is a 2-regular spanning subgraph
of G. Let G be a connected cubic graph containing a 1-factor F} and let I’ be a
graph with V(F) = V(G) and E(F) = E(G) — E(Fy). Then F is a 2-factor of G.

By a well-known theorem of Petersen [15], every 2-connected cubic graph
G has a 2-factor. Thus if G is a 2-connected cubic graph, then the edge set of G
can be partitioned into a 1-factor and a 2-factor. The following theorem due to

Schoénberger [18] and it is considered as an extension of the Petersen theorem.

Theorem 3.2.1 Let G be a 2-connected cubic graph and e € E(G).Then G has a

1-factor containing e. 0

As a consequence of Theorem 3.2.1, if G is a 2-connected cubic graph and

e, f are two incident edges of GG, then G has a 2-factor containing both e and f.

In [19], it was shown that there are two 2-connected cubic graphs of order
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6 and five 2-connected cubic graphs of order 8 as shown in Figure 12 and Figure 13.

All of those graphs are Hamiltonian.

Figure 12 Two 2-connected Cubic Graphs of Order 6.

Figure 13 Five 2-connected Cubic Graphs of Order 8.

For an integer m > 3, let C),, denote an m-cycle, a cycle of order m. The

length of a smallest cycle in a graph is referred to as its girth.

Let G be a 2-connected cubic graph of order n > 10 and F' = Ule C,, be
a 2-factor of GG. If the girth of GG is at least 5, then for each i =1,2,... k, p; > 5.

Let T = {x,y, z} be a triangle of a cubic graph G. Then T is called a pure
triangle if x,y, z have no other neighbor in common. If G contains a pure triangle
T = {z,y, 2z}, then we define G’ to be the graph obtained from G by replacing the
vertices x, ¥y, z by a new vertex v, and joining v to the third neighbors of z,y and 2

as shown in Figure 14. Thus G’ is a 2-connected simple cubic graph of order n — 2.
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Figure 14 The Graph G’.

Theorem 3.2.2 Let G be a 2-connected cubic graph of order n > 6. Then there ex-
ists a 2-factor F' = Ule Cy, of G such that for alli =1,2,... k, p; > 4. Moreover,

if n = 4q, for some integer q, then k < 7.

Proof. Let G be a 2-connected graph of order n > 6. The result trivially holds if
the girth of G is at least 5. Therefore we assume that the girth of G is at most 4.
If n = 6, then G is Hamiltonian. Suppose that G contains a pure triangle
T ={x,y,z}. Let ', 9/, 2" be the third neighbors of x,y, z, respectively (see Figure
14). Then we define G’ to be the graph obtained from G by replacing the vertices
x,y,z by a new vertex v, joining v to the neighbors of z,y, z not in V(7). Thus G’
is 2-connected simple cubic graph of order n — 2. By induction, there is a 2-factor
F' =%, C,, of G' such that for all i = 1,2,...,m, ¢; > 4. Let C’ be the cycle in
F' containing v and suppose without loss of generality that C’ contains 2/, v, 2" as
its consecutive vertices. By replacing v by z,y, z yields a cycle C' of G. Thus we
obtain a 2-factor F' = (F' — {C"}) U{C} of G satisfying the desired property.
Since K, consists of two triangles with a common edge, any triangle of
K, can not belong to any 2-factor of G. Therefore, if GG does not contain a pure

triangle, then any 2-factor of G is a union of cycles of length at least 4.

Suppose that n = 4q, for some integer q. Suppose further that GG does not
contain a pure triangle and all 2-factors of G is a union of 4-cycles. Let F' = Ule Cy,
be a 2-factor of G such that ¢ = ¢ = ... = ¢y = 4. Let C' be a4-cyclein F', V(C) =
{z,y,z,w}, E(C) = {zy,yz, zw,wx} and ',y 2, w" are the third neighbors of
x,y, z,w, respectively as shown in Figure 15. If zz ¢ E(G) and yw ¢ E(G), then

xx',yy’, 22, ww' are independent and hence /,v/, 2/, w’ are pairwise distinct. By
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Theorem 3.2.1, let F’ be a 2-factor of G containing 'z, zy. Then, by assumption
that all cycles in F” are 4-cycles, either {2/, z,y,y'} or {2/, x,y, z} induces a 4-cycle
in G. Since ' # 2/, it follows that {2/, z,y,y'} induces a 4-cycle in G. Similarly,
each of {2/, z,w,w'}, {a', x,w,w'},{y/,y, 2,2’} also induces a 4-cycle in G. Thus G
is a Hamiltonian graph of order 8. Suppose that all 4-cycles in F' induce K, in G.
Then G is Hamiltonian. Therefore, G has a 2-factor ' = Ule Cyp, of G with k < 4,

as required. O

Figure 15 A Part of Cycle C' in 2-factor F' of G'.

By using the result in Theorem 3.2.1, we obtain the following stronger

result:

Theorem 3.2.3 Let G be a 2-connected cubic graph of order n > 6 and e € E(G).
Then G has a 2-factor F = Ule C,, such that for all i = 1,2,...,k, p; > 4 and
e & E(F). Moreover, if n = 4q, for some integer q, then k < 7.

Proof. By Theorems 3.2.1 and 3.2.2, the result of this theorem holds where G
does not contain a pure triangle as its subgraph. The result also holds if n = 6, 8.
Suppose that G contains a pure triangle T = {x,y,z}, n > 10, and let G’ be
the graph as described earlier in Theorem 3.2.2. Thus G’ is of order n — 2. By
induction, for every edge e € G', G’ has a 2-factor F’ = (J;", C,, such that for all
i=1,2,...,m, ¢ >4 and e & E(F'). Let C' be the cycle in F’ containing v. If
e & {vx’,vy',v2'}, then, without loss of generality, we may assume that ¢/, v, 2’ are
consecutive vertices in C’. Let C' be a cycle obtained from C” by replacing v by
y,z,2z. Thus F = (F' — {C"}) U{C} is a 2-factor of G with the desired property. If

e € {va' vy, v2'}, say e = v’ then i, v, 2’ are consecutive vertices on C’. Let C be
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a cycle obtained from C’ by replacing v by y, z, 2. Thus F = (F' — {C'}) U{C} is a
2-factor of G with the desired property. If e € {xy,yz, zz}, say e = yz, then there
exists a 2-factor F' = (J*, Cy, of G’ for all i = 1,2,...,m, ¢ > 4, va’ & E(F").
Thus there exists a cycle C' in F” such that C’ contains ¢/, v, 2’ as its consecutive
vertices. Thus we can extend F’ to a 2-factor F' of G as described above. Thus the

proof is complete. ]

3.2.2 The Range of the Hamiltonian Numbers

For an even integer n > 4, we have already denoted that h(3") = {h(G) :
G € CR(3")}. We put min(h,3") = min{h(G) : G € CR(3")} and max(h,3") =
max{h(G) : G € CR(3")}. It is well-known that for any even integer n > 4, there
exists a Hamiltonian cubic graph of order n. Thus min(h,3™) = n. It is also well-
known that max(h,3") = min(h,3") = n if and only if n = 4,6,8. For n = 10, 12,
we have max(h,3") = n+2. Observe that for n = 10, 12, a connected cubic graph G
having h(G) = max(h,3") is a graph with a cut edge. The problem of determining

max(h,3") is more challenging. The following facts are useful.

1. If a connected graph G contains an edge e such that G — e is connected, then

h(G) < h(G —e).

Cpk—l

€1 €k—1

Cpl Op2 Cpkf 1 Cpk

Figure 16 The Construction of the Graph F' + X.
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2. If G is a 2-connected cubic graph of order n and F' = Ule C), is a 2-factor of G,
then there exists a set X = {ej,eq,...,ex_1} C E(G)— E(F) such that F'+ X
is connected. Thus h(G) < h(F+X) =n+2(k—1). In particular, if G is a 2-
connected cubic graph of order n, then, by Theorem 3.2.2, h(G) < n+2(k—1),
where k < [%2].

3. For an integers ¢ and n, n > 10, let H = {(¢ — 2)K,2K}) for n = 4q + 2
(see Figure 17) and H = ((¢ —2)K; , K}, K) for n = 4(q + 1) (see Figure 18),
where K is a graph obtained from a subdivision of cubic graph of order 6 and

a subdivision of an edge. Then, by Theorem 2.1.1, h(H) = n + 2(q — 1).

Ko< <P—<X

Figure 17 The Graph H of order 4q + 2.

Figure 18 The Graph H of order 4(q + 2).

As a consequence of above observations, we obtain the following lemma.

Lemma 3.2.4 Let G be a 2-connected cubic graph of order n > 10. Then there
exists a graph H € CR1(3"™) such that h(G) < h(H).

Proof. By using above observation and Theorem 3.2.2, we have £ < ¢. Thus
MG)<n+2(k—-1)<n+2(q—1)=h(H). Note that H € CR(3"). O

By Theorem 3.2.4 and Lemma 3.2.3, the following corollary can be easily
obtained.
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Corollary 3.2.5 Let G be a 2-connected cubic graph of order n > 10 and e =
xy € E(G). Then there exist a closed spanning walk W of G such that x,y appear
as consecutive vertices on W ezactly once and a graph H € CRy(3") such that

\W| < h(H). O

The result of Lemma 3.2.4 suggests that the value of max(h,3") can be
obtained from a cubic graph of order n having as many cut edges as possible. Let
G € CR1(3") with h(G) = max(h,3"). Let By, Ba, ..., By be the blocks of G with
|B;| > 3, for all i = 1,2,..., k. Thus there are £k — 1 blocks of G of order 2. A
block of GG of order 2 is called trivial, otherwise, it is called nontrivial. A nontrivial
block B is called a leaf block if B has exactly one vertex of degree 2. It is clear
that G has at least two leaf blocks. Thus for a nontrivial block B, we mean in this
paper, a 2-connected graph of order at least 3, 2 < d(x) < 3, for all z € V(B), and
B contains at least one vertex of degree 2. Similarly, by a leaf block, we mean a

nontrivial block with exactly one vertex of degree 2.

Lemma 3.2.6 Let B be a leaf block of order b and 5 < b < 9. Then B is Hamil-

tonian.

Proof. Since B is a leaf block of order b, bis odd and b > 5. Let v be the vertex of
degree 2 in V(B). Then B can be shown as in Figure 19. Let B; = B} +u,v,. Then
By is a 2-connected cubic graph of order at most 8 and hence B; is Hamiltonian. As
consequently Theorem 3.2.1, B; has a Hamiltonian cycle C’ containing u,v,. The

cycle C' can be extended to a Hamiltonian cycle C' of B. Thus B is Hamiltonian.

O

Let B be a nontrivial block. If W : x1, 2, ..., 2411 = 21 is a closed spanning
walk of B and e = 2y € E(B), then we say that z,y appear as consecutive vertices
in W if there exists i, 1 < i < ¢, such that {z,y} = {x;,x;41}. If z,y,x appear in

W as consecutive vertices, then we say that x,y appear twice in W.
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Ug Uz Ur—1 Uy

Vo ) Ur—1 Uy

Figure 19 A Leaf Block B of Graph G.

Lemma 3.2.7 Let B be a leaf block of order b > 11. Then there exist a closed
spanning walk W 1 x1,29, ..., 2401 = x1 of B and a connected graph H with a cut

edge such that B and H are of the same degree sequence, and |W| < h(H).

Proof. Let B be a leaf block of G of order b > 11 as shown in Figure 19. If B is
Hamiltonian of order b > 11, then we can choose a Hamiltonian walk W of B and a
graph H obtained from a connected cubic graph of order b— 1 with a subdivision the
cut edge e. Thus |W| < h(H) and H and B have the same degree sequence. Suppose
that B is not Hamiltonian. Let By = B} +u,v,. Thus By is 2-connected cubic graph
of order by < b — 1. If by < 8, then B is Hamiltonian. Suppose that b; > 10. By
Corollary 3.2.5, there exists a closed spanning walk W; of B; such that w,., v, appear
as consecutive vertices in W; by exactly once and a graph H; € CR(3") such that
|Wi| < h(Hy), where By and H; have the same degree sequence. Thus W; and H;
can be easily extended to W and H with desired result. The proof is complete. [J

For a 2-connected cubic graph G, we have constructed a closed spanning
walk W of G traveling along the cycles in a given 2-factor of G and k£ — 1 edges
connecting between k cycles in the 2-factor. It turns out that for every edge on the
k cycles appears exactly once in W while every edge that connects to the cycles

appears exactly twice in W. Lemma 3.2.6 showed the similar result for a leaf block.

Let B be a block of order b > 3. If b = 3,4, then B is Hamiltonian. If b =5
and B is not Hamiltonian, then B = K, 3 and h(B) = 6. Note that the graph K ;

has a property that for every edge e = xy, there is a Hamiltonian walk containing
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x,1y as its consecutive vertices exactly once.

If b € {6,8}, B contains exactly two vertices of degree 2, and the two
vertices x,y are not adjacent, then the graph B’ = B + xy is a cubic graph of
order b € {6,8}. Thus B’ is Hamiltonian. By Theorem 3.2.3, B’ has a Hamiltonian
cycle not containing xy. Thus B is Hamiltonian. Suppose that the two vertices
are adjacent. Let B’ be the graph obtained from B by removing the two vertices
of degree 2. Thus B’ =2 K, if b = 6, and B’ = K if b = 8, where K is obtained
from a cubic graph of order 6 by removing one edge. Thus B’ is Hamiltonian and

consequently B is Hamiltonian.

If b € {7,9}, B contains exactly three vertices of degree 2, then the three
vertices are not pairwise adjacent. Thus there are two vertices x,y of degree 2 in
B that are not adjacent and B’ = B + xy is a leaf block of order b € {7,9}. By

Lemma 3.2.6, B’ is Hamiltonian.

Theorem 3.2.8 Let B be a nontrivial block of order b > 6 of a 2-connected cubic
graph. Then B is Hamiltonian or there exist a closed spanning walk W of B and a

connected graph H with a cut edge satisfying the following conditions.

1. For every edge xy of B, x,y appear as its consecutive vertices in W by at most

twice,
2. The H and the block B have of the same degree sequence, and
3. h(H) > |W|.

Proof. Let B be a nontrivial block of order b > 6. Suppose that B is a non-
Hamiltonian graph. If b = 6, then B contains exactly four vertices of degree 2 and
h(B) = 7. Let H be a graph of order 6 obtained from two disjoint triangles and one
edge joining from one vertex of a triangle to one vertex of the other triangle. Thus

H contains a cut edge and h(H) = 8. Thus the result follows if b = 6.

Suppose that b > 7. Let B’ be the subgraph of B induced by {v, ug, vo, u1, v1,
ooy Up—1,Up—1} as shown in Figure 19. Thus V(B) = V(B') U V(Bj) and E(B) =
E(B")U E(B]) U{ur_1ur, v,—1v,}. Let By = B} +u,v,. Then By is a block of order
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at most b — 1. If B; is of order 5, then either B, is Hamiltonian or B; = Ky 3.
Since every block of order 5 has a property that every edge is contained in its closed
spanning walk of length 6, it follows that h(B) < b+ 1. It is easy to construct
a graph H with the desired property. Suppose that B is of order at least 6. By
induction, there exist a closed spanning walk W; of By in which for every edge xy
of By, x,y appear as its consecutive vertices at most twice and a connected graph
H, with an edge cut such that |W;| < h(H;), where B; and H; have the same
degree sequence. We now construct a closed spanning walk W of B according to

the following properties of W7.

1. If u,,v, appear exactly once as consecutive vertices on W, then we obtain a
closed spanning walk W of B from W; by replacing u,, v, by w,, u,_1,...,ug, v, Vo,

V1yeoo s Upe1,Up. Thus [W| = |Wi| —=142r+2=|Wy|+2r+1.

2. If u,,v, appear exactly twice as consecutive vertices on Wi, then we obtain a
closed spanning walk W of B from W; by replacing u,, v, by w,, u,_1,...,uq, v, v,
v1,...,0._1,0, for the first pair and replacing u,, v, by u,,u,_1,v,_1,v, for the sec-

ond pair. Thus |W|=|W| —1+2r+2—-1+4+3=|W;|+2r+3.

3. If u,,v,, u, appear as consecutive vertices on Wi, then we obtain a closed span-
ning walk W of B from W by replacing u,., v, tu, by ., w,_1,..., Uy, v, Vg, V1, ...,

Up—1, Upy Up—1, Up—1, Up. Thus [W| = |Wi| =14+2r+2—-1+3 = |Wy| +2r + 3.

4. If u,,v, do not appear as consecutive vertices on Wi, then we obtain a closed
spanning walk W of B from W; by replacing u, by w,, u,_1, ..., ug, v, v, 1, ...,

Vp—1, Up_1, Up. Thus [W| =|Wi|+2r+24+1=|Wi|+2r+ 3.

Thus W is a closed spanning walk of B and |W| < |Wi| 4+ 2r + 3 and
for every edge e = xy € F(B), x,y appear as consecutive vertices in W at most
twice. On the other hand, let B’ be a graph with V(B') = V(B) — V(B;) and
E(B') = E(B)— E(By). Since H; contains a cut edge e = pq, it follows that a graph
H, where V(H) =V(B')UV(H,) and E(H) = E(B")UE(H, —e) U{u,_1p, v,_1q},
contains a cut edge. Thus h(H) = h(B') + h(Hy) —2+4=h(H))+2r+1+2=
h(Hy) + 2r + 3 > |W|. The proof is complete. O
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Let G € CR(3") such that n > 14 and h(G) = max(h,3"). Then, by
Lemmas 3.2.6 and 3.2.7, there exists a leaf block of G that is isomorphic to K, and
by Theorem 3.2.8, all nontrivial blocks of G are K53 or Hamiltonian. The following

lemma is easily obtained.

Gis

Figure 20 GI‘&phS G147 G16 and Glg.

Lemma 3.2.9 max(h,3") =18, max(h,3'%) = 21 and max(h,3'®) = 24.

Proof. We first construct graphs G4, G16 and G1g with h(G14) = 18, h(G1g) = 21
and h(Gig) = 24. Let G € CR(3") such that h(G) = max(h,3') and G contains
K as a leaf block. Thus G = (K, ,G;), where G is a connected graph of order
9 containing 8 vertices of degree 3 and a vertex of degree 2. If (; is 2-connected,
then G; is Hamiltonian and h(G) = 16 < 18 = h(Gy4). Thus G; contains a cut
edge. Therefore G = Gyy. Clearly, max(h,3') = 18. Let G € CR(3'%) and
h(G) = max(h,3'%). If G has only two trivial blocks, then h(G) < 16 +4 = 20 <
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21 = h(Gy6). Thus G must have at least three trivial blocks. Since the order of G
is 16 and G has at least two leaf block of order 5, G = Gi4. Let G € CR(3") and
h(G) = max(h,3™). If G contains a nontrivial block of order 3, then the block is a
pure triangle. We can form a new graph G’ of order n — 2 by replacing the triangle
by a new vertex and joining this new vertex to the former neighbors of the triangle.
Then h(G) = h(G') + 3. Let G € CR1(3'®) and h(G) = max(h,3'®). Thus if G has
a block of order 3, then G = G5 and h(G) = 24. If G does not have a nontrivial

block of order 3, then G = (2K, 2K, ). Thus max(h,3!8) = 24. O
G20 .

Figure 21 The Construction of the Graph Gyg.

Let G € CR1(3") and zy be a cut edge of G. A graph G(K4(v)) is a graph
obtained from G and Kj(v) by deleting the edge zy and adding the edges xz, zy, zv,
where z is a new vertex. By Theorem 2.1.1, it follows that A(G(Ky(v)) = h(G) + 9.
Note that the graph G(K4(v)) € CRy(3"°). Let Gy = 2K, K;),Gis = (3K])
and Gig = (3K, K3). Thus G4, G165 and Gz are connected cubic graphs of order
14, 16, and 18, respectively. Then h(Gi4) = 18, h(G1s) = 21 and h(Gis) = 24.
Note that each of the graphs G4, Gig and Gz contains a cut edge. Thus for an
integer n; = 14 4 24, i > 3, a graph G,,, = G,, ,(K4(v)) € CR1(3™) and h(G,,) =
18 4+ 3i. We construct the graph Goy by the graph G4 as shown in Figure 21. Thus
max(h, 31472%) > 18+ 34, for all non-negative integer i. We show in the next theorem

that the graph G,,, satisfies h(G,,,) = max(h,